Linear graphlet models for accurate and interpretable cheminformatics
Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging...
Gespeichert in:
Veröffentlicht in: | Digital discovery 2024-10, Vol.3 (1), p.198-1996 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1996 |
---|---|
container_issue | 1 |
container_start_page | 198 |
container_title | Digital discovery |
container_volume | 3 |
creator | Tynes, Michael Taylor, Michael G Janssen, Jan Burrill, Daniel J Perez, Danny Yang, Ping Lubbers, Nicholas |
description | Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty.
The surprising effectiveness of topology in the chemical sciences: graphlets in our open-source library,
, provide accurate white-box 2D chemical property prediction. |
doi_str_mv | 10.1039/d4dd00089g |
format | Article |
fullrecord | <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4DD00089G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4dd00089g</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-6ec395b6cb1a874e7e6a1ca9d4308da113ec9e7d07856c2f9d9cef4a8f2b6f1c3</originalsourceid><addsrcrecordid>eNpN0E1LAzEQgOEgCpbai3cheBRWk002mxylrR9Q8KLgbclOJm1kP0oSD_57VyvqaebwMAwvIeecXXMmzI2TzjHGtNkekVmpRFUwo1-P_-2nZJHS22TKuuZcqBlZb8KANtJttPtdh5n2o8MuUT9GagHeo81I7eBoGDLGfcRs2w4p7LAPw4R6mwOkM3LibZdw8TPn5OVu_bx8KDZP94_L200BJatyoRCEqVoFLbe6llijshyscVIw7ez0EYLB2rFaVwpKb5wB9NJqX7bKcxBzcnm4O6YcmgQhI-xgHAaE3JRSaMn0hK4OCOKYUkTf7GPobfxoOGu-QjUruVp9h7qf8MUBxwS_7i-k-ASKwGYW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear graphlet models for accurate and interpretable cheminformatics</title><source>DOAJ Directory of Open Access Journals</source><creator>Tynes, Michael ; Taylor, Michael G ; Janssen, Jan ; Burrill, Daniel J ; Perez, Danny ; Yang, Ping ; Lubbers, Nicholas</creator><creatorcontrib>Tynes, Michael ; Taylor, Michael G ; Janssen, Jan ; Burrill, Daniel J ; Perez, Danny ; Yang, Ping ; Lubbers, Nicholas ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty.
The surprising effectiveness of topology in the chemical sciences: graphlets in our open-source library,
, provide accurate white-box 2D chemical property prediction.</description><identifier>ISSN: 2635-098X</identifier><identifier>EISSN: 2635-098X</identifier><identifier>DOI: 10.1039/d4dd00089g</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>cheminformatics ; Computer Science ; graphlet ; Information Science ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; interpretability ; machine learning ; MATHEMATICS AND COMPUTING ; molecular property prediction ; Organic Chemistry ; uncertainty quantification</subject><ispartof>Digital discovery, 2024-10, Vol.3 (1), p.198-1996</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-6ec395b6cb1a874e7e6a1ca9d4308da113ec9e7d07856c2f9d9cef4a8f2b6f1c3</cites><orcidid>0000-0003-3028-5249 ; 0000-0002-5007-1056 ; 0000-0003-4726-2860 ; 0000-0001-9948-7119 ; 0000-0002-9001-9973 ; 0000000290019973 ; 0000000250071056 ; 0000000199487119 ; 0000000347262860 ; 0000000330285249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2438408$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tynes, Michael</creatorcontrib><creatorcontrib>Taylor, Michael G</creatorcontrib><creatorcontrib>Janssen, Jan</creatorcontrib><creatorcontrib>Burrill, Daniel J</creatorcontrib><creatorcontrib>Perez, Danny</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Lubbers, Nicholas</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Linear graphlet models for accurate and interpretable cheminformatics</title><title>Digital discovery</title><description>Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty.
The surprising effectiveness of topology in the chemical sciences: graphlets in our open-source library,
, provide accurate white-box 2D chemical property prediction.</description><subject>cheminformatics</subject><subject>Computer Science</subject><subject>graphlet</subject><subject>Information Science</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>interpretability</subject><subject>machine learning</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>molecular property prediction</subject><subject>Organic Chemistry</subject><subject>uncertainty quantification</subject><issn>2635-098X</issn><issn>2635-098X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0E1LAzEQgOEgCpbai3cheBRWk002mxylrR9Q8KLgbclOJm1kP0oSD_57VyvqaebwMAwvIeecXXMmzI2TzjHGtNkekVmpRFUwo1-P_-2nZJHS22TKuuZcqBlZb8KANtJttPtdh5n2o8MuUT9GagHeo81I7eBoGDLGfcRs2w4p7LAPw4R6mwOkM3LibZdw8TPn5OVu_bx8KDZP94_L200BJatyoRCEqVoFLbe6llijshyscVIw7ez0EYLB2rFaVwpKb5wB9NJqX7bKcxBzcnm4O6YcmgQhI-xgHAaE3JRSaMn0hK4OCOKYUkTf7GPobfxoOGu-QjUruVp9h7qf8MUBxwS_7i-k-ASKwGYW</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Tynes, Michael</creator><creator>Taylor, Michael G</creator><creator>Janssen, Jan</creator><creator>Burrill, Daniel J</creator><creator>Perez, Danny</creator><creator>Yang, Ping</creator><creator>Lubbers, Nicholas</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3028-5249</orcidid><orcidid>https://orcid.org/0000-0002-5007-1056</orcidid><orcidid>https://orcid.org/0000-0003-4726-2860</orcidid><orcidid>https://orcid.org/0000-0001-9948-7119</orcidid><orcidid>https://orcid.org/0000-0002-9001-9973</orcidid><orcidid>https://orcid.org/0000000290019973</orcidid><orcidid>https://orcid.org/0000000250071056</orcidid><orcidid>https://orcid.org/0000000199487119</orcidid><orcidid>https://orcid.org/0000000347262860</orcidid><orcidid>https://orcid.org/0000000330285249</orcidid></search><sort><creationdate>20241009</creationdate><title>Linear graphlet models for accurate and interpretable cheminformatics</title><author>Tynes, Michael ; Taylor, Michael G ; Janssen, Jan ; Burrill, Daniel J ; Perez, Danny ; Yang, Ping ; Lubbers, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-6ec395b6cb1a874e7e6a1ca9d4308da113ec9e7d07856c2f9d9cef4a8f2b6f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cheminformatics</topic><topic>Computer Science</topic><topic>graphlet</topic><topic>Information Science</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>interpretability</topic><topic>machine learning</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>molecular property prediction</topic><topic>Organic Chemistry</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tynes, Michael</creatorcontrib><creatorcontrib>Taylor, Michael G</creatorcontrib><creatorcontrib>Janssen, Jan</creatorcontrib><creatorcontrib>Burrill, Daniel J</creatorcontrib><creatorcontrib>Perez, Danny</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Lubbers, Nicholas</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Digital discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tynes, Michael</au><au>Taylor, Michael G</au><au>Janssen, Jan</au><au>Burrill, Daniel J</au><au>Perez, Danny</au><au>Yang, Ping</au><au>Lubbers, Nicholas</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear graphlet models for accurate and interpretable cheminformatics</atitle><jtitle>Digital discovery</jtitle><date>2024-10-09</date><risdate>2024</risdate><volume>3</volume><issue>1</issue><spage>198</spage><epage>1996</epage><pages>198-1996</pages><issn>2635-098X</issn><eissn>2635-098X</eissn><abstract>Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty.
The surprising effectiveness of topology in the chemical sciences: graphlets in our open-source library,
, provide accurate white-box 2D chemical property prediction.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4dd00089g</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3028-5249</orcidid><orcidid>https://orcid.org/0000-0002-5007-1056</orcidid><orcidid>https://orcid.org/0000-0003-4726-2860</orcidid><orcidid>https://orcid.org/0000-0001-9948-7119</orcidid><orcidid>https://orcid.org/0000-0002-9001-9973</orcidid><orcidid>https://orcid.org/0000000290019973</orcidid><orcidid>https://orcid.org/0000000250071056</orcidid><orcidid>https://orcid.org/0000000199487119</orcidid><orcidid>https://orcid.org/0000000347262860</orcidid><orcidid>https://orcid.org/0000000330285249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2635-098X |
ispartof | Digital discovery, 2024-10, Vol.3 (1), p.198-1996 |
issn | 2635-098X 2635-098X |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4DD00089G |
source | DOAJ Directory of Open Access Journals |
subjects | cheminformatics Computer Science graphlet Information Science INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY interpretability machine learning MATHEMATICS AND COMPUTING molecular property prediction Organic Chemistry uncertainty quantification |
title | Linear graphlet models for accurate and interpretable cheminformatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20graphlet%20models%20for%20accurate%20and%20interpretable%20cheminformatics&rft.jtitle=Digital%20discovery&rft.au=Tynes,%20Michael&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-10-09&rft.volume=3&rft.issue=1&rft.spage=198&rft.epage=1996&rft.pages=198-1996&rft.issn=2635-098X&rft.eissn=2635-098X&rft_id=info:doi/10.1039/d4dd00089g&rft_dat=%3Crsc_cross%3Ed4dd00089g%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |