Linear graphlet models for accurate and interpretable cheminformatics

Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital discovery 2024-10, Vol.3 (1), p.198-1996
Hauptverfasser: Tynes, Michael, Taylor, Michael G, Janssen, Jan, Burrill, Daniel J, Perez, Danny, Yang, Ping, Lubbers, Nicholas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1996
container_issue 1
container_start_page 198
container_title Digital discovery
container_volume 3
creator Tynes, Michael
Taylor, Michael G
Janssen, Jan
Burrill, Daniel J
Perez, Danny
Yang, Ping
Lubbers, Nicholas
description Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty. The surprising effectiveness of topology in the chemical sciences: graphlets in our open-source library, , provide accurate white-box 2D chemical property prediction.
doi_str_mv 10.1039/d4dd00089g
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4DD00089G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4dd00089g</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-6ec395b6cb1a874e7e6a1ca9d4308da113ec9e7d07856c2f9d9cef4a8f2b6f1c3</originalsourceid><addsrcrecordid>eNpN0E1LAzEQgOEgCpbai3cheBRWk002mxylrR9Q8KLgbclOJm1kP0oSD_57VyvqaebwMAwvIeecXXMmzI2TzjHGtNkekVmpRFUwo1-P_-2nZJHS22TKuuZcqBlZb8KANtJttPtdh5n2o8MuUT9GagHeo81I7eBoGDLGfcRs2w4p7LAPw4R6mwOkM3LibZdw8TPn5OVu_bx8KDZP94_L200BJatyoRCEqVoFLbe6llijshyscVIw7ez0EYLB2rFaVwpKb5wB9NJqX7bKcxBzcnm4O6YcmgQhI-xgHAaE3JRSaMn0hK4OCOKYUkTf7GPobfxoOGu-QjUruVp9h7qf8MUBxwS_7i-k-ASKwGYW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear graphlet models for accurate and interpretable cheminformatics</title><source>DOAJ Directory of Open Access Journals</source><creator>Tynes, Michael ; Taylor, Michael G ; Janssen, Jan ; Burrill, Daniel J ; Perez, Danny ; Yang, Ping ; Lubbers, Nicholas</creator><creatorcontrib>Tynes, Michael ; Taylor, Michael G ; Janssen, Jan ; Burrill, Daniel J ; Perez, Danny ; Yang, Ping ; Lubbers, Nicholas ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty. The surprising effectiveness of topology in the chemical sciences: graphlets in our open-source library, , provide accurate white-box 2D chemical property prediction.</description><identifier>ISSN: 2635-098X</identifier><identifier>EISSN: 2635-098X</identifier><identifier>DOI: 10.1039/d4dd00089g</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>cheminformatics ; Computer Science ; graphlet ; Information Science ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; interpretability ; machine learning ; MATHEMATICS AND COMPUTING ; molecular property prediction ; Organic Chemistry ; uncertainty quantification</subject><ispartof>Digital discovery, 2024-10, Vol.3 (1), p.198-1996</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-6ec395b6cb1a874e7e6a1ca9d4308da113ec9e7d07856c2f9d9cef4a8f2b6f1c3</cites><orcidid>0000-0003-3028-5249 ; 0000-0002-5007-1056 ; 0000-0003-4726-2860 ; 0000-0001-9948-7119 ; 0000-0002-9001-9973 ; 0000000290019973 ; 0000000250071056 ; 0000000199487119 ; 0000000347262860 ; 0000000330285249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2438408$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tynes, Michael</creatorcontrib><creatorcontrib>Taylor, Michael G</creatorcontrib><creatorcontrib>Janssen, Jan</creatorcontrib><creatorcontrib>Burrill, Daniel J</creatorcontrib><creatorcontrib>Perez, Danny</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Lubbers, Nicholas</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Linear graphlet models for accurate and interpretable cheminformatics</title><title>Digital discovery</title><description>Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty. The surprising effectiveness of topology in the chemical sciences: graphlets in our open-source library, , provide accurate white-box 2D chemical property prediction.</description><subject>cheminformatics</subject><subject>Computer Science</subject><subject>graphlet</subject><subject>Information Science</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>interpretability</subject><subject>machine learning</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>molecular property prediction</subject><subject>Organic Chemistry</subject><subject>uncertainty quantification</subject><issn>2635-098X</issn><issn>2635-098X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0E1LAzEQgOEgCpbai3cheBRWk002mxylrR9Q8KLgbclOJm1kP0oSD_57VyvqaebwMAwvIeecXXMmzI2TzjHGtNkekVmpRFUwo1-P_-2nZJHS22TKuuZcqBlZb8KANtJttPtdh5n2o8MuUT9GagHeo81I7eBoGDLGfcRs2w4p7LAPw4R6mwOkM3LibZdw8TPn5OVu_bx8KDZP94_L200BJatyoRCEqVoFLbe6llijshyscVIw7ez0EYLB2rFaVwpKb5wB9NJqX7bKcxBzcnm4O6YcmgQhI-xgHAaE3JRSaMn0hK4OCOKYUkTf7GPobfxoOGu-QjUruVp9h7qf8MUBxwS_7i-k-ASKwGYW</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Tynes, Michael</creator><creator>Taylor, Michael G</creator><creator>Janssen, Jan</creator><creator>Burrill, Daniel J</creator><creator>Perez, Danny</creator><creator>Yang, Ping</creator><creator>Lubbers, Nicholas</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3028-5249</orcidid><orcidid>https://orcid.org/0000-0002-5007-1056</orcidid><orcidid>https://orcid.org/0000-0003-4726-2860</orcidid><orcidid>https://orcid.org/0000-0001-9948-7119</orcidid><orcidid>https://orcid.org/0000-0002-9001-9973</orcidid><orcidid>https://orcid.org/0000000290019973</orcidid><orcidid>https://orcid.org/0000000250071056</orcidid><orcidid>https://orcid.org/0000000199487119</orcidid><orcidid>https://orcid.org/0000000347262860</orcidid><orcidid>https://orcid.org/0000000330285249</orcidid></search><sort><creationdate>20241009</creationdate><title>Linear graphlet models for accurate and interpretable cheminformatics</title><author>Tynes, Michael ; Taylor, Michael G ; Janssen, Jan ; Burrill, Daniel J ; Perez, Danny ; Yang, Ping ; Lubbers, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-6ec395b6cb1a874e7e6a1ca9d4308da113ec9e7d07856c2f9d9cef4a8f2b6f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cheminformatics</topic><topic>Computer Science</topic><topic>graphlet</topic><topic>Information Science</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>interpretability</topic><topic>machine learning</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>molecular property prediction</topic><topic>Organic Chemistry</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tynes, Michael</creatorcontrib><creatorcontrib>Taylor, Michael G</creatorcontrib><creatorcontrib>Janssen, Jan</creatorcontrib><creatorcontrib>Burrill, Daniel J</creatorcontrib><creatorcontrib>Perez, Danny</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Lubbers, Nicholas</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Digital discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tynes, Michael</au><au>Taylor, Michael G</au><au>Janssen, Jan</au><au>Burrill, Daniel J</au><au>Perez, Danny</au><au>Yang, Ping</au><au>Lubbers, Nicholas</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear graphlet models for accurate and interpretable cheminformatics</atitle><jtitle>Digital discovery</jtitle><date>2024-10-09</date><risdate>2024</risdate><volume>3</volume><issue>1</issue><spage>198</spage><epage>1996</epage><pages>198-1996</pages><issn>2635-098X</issn><eissn>2635-098X</eissn><abstract>Advances in machine learning have given rise to a plurality of data-driven methods for predicting chemical properties from molecular structure. For many decades, the cheminformatics field has relied heavily on structural fingerprinting, while in recent years much focus has shifted toward leveraging highly parameterized deep neural networks which usually maximize accuracy. Beyond accuracy, to be useful and trustworthy in scientific applications, machine learning techniques often need intuitive explanations for model predictions and uncertainty quantification techniques so a practitioner might know when a model is appropriate to apply to new data. Here we revisit graphlet histogram fingerprints and introduce several new elements. We show that linear models built on graphlet fingerprints attain accuracy that is competitive with the state of the art while retaining an explainability advantage over black-box approaches. We show how to produce precise explanations of predictions by exploiting the relationships between molecular graphlets and show that these explanations are consistent with chemical intuition, experimental measurements, and theoretical calculations. Finally, we show how to use the presence of unseen fragments in new molecules to adjust predictions and quantify uncertainty. The surprising effectiveness of topology in the chemical sciences: graphlets in our open-source library, , provide accurate white-box 2D chemical property prediction.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4dd00089g</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3028-5249</orcidid><orcidid>https://orcid.org/0000-0002-5007-1056</orcidid><orcidid>https://orcid.org/0000-0003-4726-2860</orcidid><orcidid>https://orcid.org/0000-0001-9948-7119</orcidid><orcidid>https://orcid.org/0000-0002-9001-9973</orcidid><orcidid>https://orcid.org/0000000290019973</orcidid><orcidid>https://orcid.org/0000000250071056</orcidid><orcidid>https://orcid.org/0000000199487119</orcidid><orcidid>https://orcid.org/0000000347262860</orcidid><orcidid>https://orcid.org/0000000330285249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2635-098X
ispartof Digital discovery, 2024-10, Vol.3 (1), p.198-1996
issn 2635-098X
2635-098X
language eng
recordid cdi_crossref_primary_10_1039_D4DD00089G
source DOAJ Directory of Open Access Journals
subjects cheminformatics
Computer Science
graphlet
Information Science
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
interpretability
machine learning
MATHEMATICS AND COMPUTING
molecular property prediction
Organic Chemistry
uncertainty quantification
title Linear graphlet models for accurate and interpretable cheminformatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20graphlet%20models%20for%20accurate%20and%20interpretable%20cheminformatics&rft.jtitle=Digital%20discovery&rft.au=Tynes,%20Michael&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-10-09&rft.volume=3&rft.issue=1&rft.spage=198&rft.epage=1996&rft.pages=198-1996&rft.issn=2635-098X&rft.eissn=2635-098X&rft_id=info:doi/10.1039/d4dd00089g&rft_dat=%3Crsc_cross%3Ed4dd00089g%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true