Structure and property exploration of two-dimensional, bulk, and cluster lithium sulfide using the IM 2 ODE method

Lithium sulfide (Li S) plays an important role in fields such as energy, environment and semiconductors. Exploration of the microstructure of Li S has significant implications for developing new materials and optimizing related material properties. In this work, the inverse design of materials by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-12, Vol.27 (1), p.408-418
Hauptverfasser: Wang, Danling, Bai, Chenqi, Cao, Jian, Wang, Yu, Chen, Zian, Wang, Lei, Xu, Lina, Xiao, Hongping, Zhang, Yueyu, Fang, Guoyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 1
container_start_page 408
container_title Physical chemistry chemical physics : PCCP
container_volume 27
creator Wang, Danling
Bai, Chenqi
Cao, Jian
Wang, Yu
Chen, Zian
Wang, Lei
Xu, Lina
Xiao, Hongping
Zhang, Yueyu
Fang, Guoyong
description Lithium sulfide (Li S) plays an important role in fields such as energy, environment and semiconductors. Exploration of the microstructure of Li S has significant implications for developing new materials and optimizing related material properties. In this work, the inverse design of materials by the multi-objective differential evolution (IM ODE) method combined with density functional theory (DFT) calculations was used to predict the two-dimensional (2D), three-dimensional (3D), and cluster structures of Li S. Their structural stabilities and electronic properties were further investigated. Novel monolayer and double-layer hexagonal structures of 2D Li S are predicted. The double-layer structure has better thermal stability and a wider band gap of 3.5 eV than the single-layer structure. Various novel structures of 3D Li S are predicted. Some structures are similar to 1T-MoS and the double-layer hexagonal structure of 2D Li S. With increasing number of atoms, the (Li S) clusters converge into a cage-like structure and their average binding energies decrease. The second-order energy differences of (Li S) clusters show an odd-even oscillation rule. The ionization potentials, electron affinities, electronegativities, and chemical hardnesses also decrease. These findings should improve theoretical understanding of the properties and behavior of new 2D, 3D, and cluster functional materials.
doi_str_mv 10.1039/d4cp03587a
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4CP03587A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39648979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589-3319d026181dc92ea90c7e8ecb8a393aa7052d33e5545369b8dd8a25739b860d3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujEUQ3_gDTtWG0nU5n2iUBVBIMJrKfdNo7Mjqv9BHk34ugrO7JzXfO4kPolpIHSph8NInuCeMiU2doSJOURZKI5PyUs3SArpz7JIRQTtklGjCZJkJmcojsu7dB-2ABq9bg3nY9WL_D8N3XnVW-6lrcldhvu8hUDbRu_1D1GBeh_hofKroOzoPFdeU3VWiwC3VZGcDBVe0H9hvAi1cc49Vsjhvwm85co4tS1Q5u_u4IrZ_m6-lLtFw9L6aTZaS5kBFjVBoSp1RQo2UMShKdgQBdCMUkUyojPDaMAecJZ6kshDFCxTxj-5gSw0bo_jirbeechTLvbdUou8spyX-95bNk-nbwNtnDd0e4D0UD5oT-i2I_d0VpDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure and property exploration of two-dimensional, bulk, and cluster lithium sulfide using the IM 2 ODE method</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Danling ; Bai, Chenqi ; Cao, Jian ; Wang, Yu ; Chen, Zian ; Wang, Lei ; Xu, Lina ; Xiao, Hongping ; Zhang, Yueyu ; Fang, Guoyong</creator><creatorcontrib>Wang, Danling ; Bai, Chenqi ; Cao, Jian ; Wang, Yu ; Chen, Zian ; Wang, Lei ; Xu, Lina ; Xiao, Hongping ; Zhang, Yueyu ; Fang, Guoyong</creatorcontrib><description>Lithium sulfide (Li S) plays an important role in fields such as energy, environment and semiconductors. Exploration of the microstructure of Li S has significant implications for developing new materials and optimizing related material properties. In this work, the inverse design of materials by the multi-objective differential evolution (IM ODE) method combined with density functional theory (DFT) calculations was used to predict the two-dimensional (2D), three-dimensional (3D), and cluster structures of Li S. Their structural stabilities and electronic properties were further investigated. Novel monolayer and double-layer hexagonal structures of 2D Li S are predicted. The double-layer structure has better thermal stability and a wider band gap of 3.5 eV than the single-layer structure. Various novel structures of 3D Li S are predicted. Some structures are similar to 1T-MoS and the double-layer hexagonal structure of 2D Li S. With increasing number of atoms, the (Li S) clusters converge into a cage-like structure and their average binding energies decrease. The second-order energy differences of (Li S) clusters show an odd-even oscillation rule. The ionization potentials, electron affinities, electronegativities, and chemical hardnesses also decrease. These findings should improve theoretical understanding of the properties and behavior of new 2D, 3D, and cluster functional materials.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp03587a</identifier><identifier>PMID: 39648979</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2024-12, Vol.27 (1), p.408-418</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c589-3319d026181dc92ea90c7e8ecb8a393aa7052d33e5545369b8dd8a25739b860d3</cites><orcidid>0000-0001-6817-3790 ; 0000-0002-0455-3839 ; 0000-0001-8460-268X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39648979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Danling</creatorcontrib><creatorcontrib>Bai, Chenqi</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Chen, Zian</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Xu, Lina</creatorcontrib><creatorcontrib>Xiao, Hongping</creatorcontrib><creatorcontrib>Zhang, Yueyu</creatorcontrib><creatorcontrib>Fang, Guoyong</creatorcontrib><title>Structure and property exploration of two-dimensional, bulk, and cluster lithium sulfide using the IM 2 ODE method</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Lithium sulfide (Li S) plays an important role in fields such as energy, environment and semiconductors. Exploration of the microstructure of Li S has significant implications for developing new materials and optimizing related material properties. In this work, the inverse design of materials by the multi-objective differential evolution (IM ODE) method combined with density functional theory (DFT) calculations was used to predict the two-dimensional (2D), three-dimensional (3D), and cluster structures of Li S. Their structural stabilities and electronic properties were further investigated. Novel monolayer and double-layer hexagonal structures of 2D Li S are predicted. The double-layer structure has better thermal stability and a wider band gap of 3.5 eV than the single-layer structure. Various novel structures of 3D Li S are predicted. Some structures are similar to 1T-MoS and the double-layer hexagonal structure of 2D Li S. With increasing number of atoms, the (Li S) clusters converge into a cage-like structure and their average binding energies decrease. The second-order energy differences of (Li S) clusters show an odd-even oscillation rule. The ionization potentials, electron affinities, electronegativities, and chemical hardnesses also decrease. These findings should improve theoretical understanding of the properties and behavior of new 2D, 3D, and cluster functional materials.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAjEUhRujEUQ3_gDTtWG0nU5n2iUBVBIMJrKfdNo7Mjqv9BHk34ugrO7JzXfO4kPolpIHSph8NInuCeMiU2doSJOURZKI5PyUs3SArpz7JIRQTtklGjCZJkJmcojsu7dB-2ABq9bg3nY9WL_D8N3XnVW-6lrcldhvu8hUDbRu_1D1GBeh_hofKroOzoPFdeU3VWiwC3VZGcDBVe0H9hvAi1cc49Vsjhvwm85co4tS1Q5u_u4IrZ_m6-lLtFw9L6aTZaS5kBFjVBoSp1RQo2UMShKdgQBdCMUkUyojPDaMAecJZ6kshDFCxTxj-5gSw0bo_jirbeechTLvbdUou8spyX-95bNk-nbwNtnDd0e4D0UD5oT-i2I_d0VpDA</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Wang, Danling</creator><creator>Bai, Chenqi</creator><creator>Cao, Jian</creator><creator>Wang, Yu</creator><creator>Chen, Zian</creator><creator>Wang, Lei</creator><creator>Xu, Lina</creator><creator>Xiao, Hongping</creator><creator>Zhang, Yueyu</creator><creator>Fang, Guoyong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6817-3790</orcidid><orcidid>https://orcid.org/0000-0002-0455-3839</orcidid><orcidid>https://orcid.org/0000-0001-8460-268X</orcidid></search><sort><creationdate>20241218</creationdate><title>Structure and property exploration of two-dimensional, bulk, and cluster lithium sulfide using the IM 2 ODE method</title><author>Wang, Danling ; Bai, Chenqi ; Cao, Jian ; Wang, Yu ; Chen, Zian ; Wang, Lei ; Xu, Lina ; Xiao, Hongping ; Zhang, Yueyu ; Fang, Guoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589-3319d026181dc92ea90c7e8ecb8a393aa7052d33e5545369b8dd8a25739b860d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Danling</creatorcontrib><creatorcontrib>Bai, Chenqi</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Chen, Zian</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Xu, Lina</creatorcontrib><creatorcontrib>Xiao, Hongping</creatorcontrib><creatorcontrib>Zhang, Yueyu</creatorcontrib><creatorcontrib>Fang, Guoyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Danling</au><au>Bai, Chenqi</au><au>Cao, Jian</au><au>Wang, Yu</au><au>Chen, Zian</au><au>Wang, Lei</au><au>Xu, Lina</au><au>Xiao, Hongping</au><au>Zhang, Yueyu</au><au>Fang, Guoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and property exploration of two-dimensional, bulk, and cluster lithium sulfide using the IM 2 ODE method</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>27</volume><issue>1</issue><spage>408</spage><epage>418</epage><pages>408-418</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Lithium sulfide (Li S) plays an important role in fields such as energy, environment and semiconductors. Exploration of the microstructure of Li S has significant implications for developing new materials and optimizing related material properties. In this work, the inverse design of materials by the multi-objective differential evolution (IM ODE) method combined with density functional theory (DFT) calculations was used to predict the two-dimensional (2D), three-dimensional (3D), and cluster structures of Li S. Their structural stabilities and electronic properties were further investigated. Novel monolayer and double-layer hexagonal structures of 2D Li S are predicted. The double-layer structure has better thermal stability and a wider band gap of 3.5 eV than the single-layer structure. Various novel structures of 3D Li S are predicted. Some structures are similar to 1T-MoS and the double-layer hexagonal structure of 2D Li S. With increasing number of atoms, the (Li S) clusters converge into a cage-like structure and their average binding energies decrease. The second-order energy differences of (Li S) clusters show an odd-even oscillation rule. The ionization potentials, electron affinities, electronegativities, and chemical hardnesses also decrease. These findings should improve theoretical understanding of the properties and behavior of new 2D, 3D, and cluster functional materials.</abstract><cop>England</cop><pmid>39648979</pmid><doi>10.1039/d4cp03587a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6817-3790</orcidid><orcidid>https://orcid.org/0000-0002-0455-3839</orcidid><orcidid>https://orcid.org/0000-0001-8460-268X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-12, Vol.27 (1), p.408-418
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D4CP03587A
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Structure and property exploration of two-dimensional, bulk, and cluster lithium sulfide using the IM 2 ODE method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20property%20exploration%20of%20two-dimensional,%20bulk,%20and%20cluster%20lithium%20sulfide%20using%20the%20IM%202%20ODE%20method&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wang,%20Danling&rft.date=2024-12-18&rft.volume=27&rft.issue=1&rft.spage=408&rft.epage=418&rft.pages=408-418&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp03587a&rft_dat=%3Cpubmed_cross%3E39648979%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39648979&rfr_iscdi=true