Lattice thermal conductivity reduction in Ca 3 AlSb 3 and Ca 5 Al 2 Sb 6 by manipulating the covalent tetrahedral chain
Understanding the structural and physical origins of low thermal conductivity is critical to improving and designing efficient thermoelectric materials. For two distinct Zintl Ca-Al-Sb compounds with different stoichiometric ratios (Ca AlSb and Ca Al Sb ), experimental measurements suggest the low l...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-11, Vol.26 (45), p.28595-28605 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28605 |
---|---|
container_issue | 45 |
container_start_page | 28595 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Zhang, Chi Zhai, Wenya Li, Jingyu Zhu, Jianbo Ou, Zengfu Li, Lanwei Liu, Peng-Fei Liu, Xiaobing Yan, Yuli Zhang, Yongsheng |
description | Understanding the structural and physical origins of low thermal conductivity is critical to improving and designing efficient thermoelectric materials. For two distinct Zintl Ca-Al-Sb compounds with different stoichiometric ratios (Ca
AlSb
and Ca
Al
Sb
), experimental measurements suggest the low lattice thermal conductivities (∼1.43 W mK
for Ca
AlSb
and 1.52 W mK
for Ca
Al
Sb
at 300 K). In order to understand the physical origin of the low thermal conductivity, we present the first-principles studies on the lattice dynamics and phonon-transport properties. The theoretically calculated lattice thermal conductivity of Ca
AlSb
and Ca
Al
Sb
is ∼1.61 W mK
for Ca
AlSb
and 1.85 W mK
for Ca
Al
Sb
at 300 K, which is in reasonable agreement with the experimental measurements. The low lattice thermal conductivity is attributed to the low acoustic Debye temperature and strong optical-acoustic phonon couplings in the two Ca-Al-Sb compounds. It is worth noting that the thermal conductivity of Ca
AlSb
and Ca
Al
Sb
along the
direction (along the Al-Sb chain) is obviously higher than that along the
/
direction (perpendicular to the chain). The high lattice thermal conductivity along the Al-Sb chain is due to the strong Al-Sb covalent bond. From the phonon density of states (PDOS), the obviously frequency regions dominated by different atoms suggest that forming defects with one atom would only shift its related PDOS and might not affect the PDOS of others. Based on the understandings of the crystal structure, PDOS and atomic displacement parameter, we represent a methodology to further lower their lattice thermal conductivity: substituting heavier atoms along the Al-Sb chain to strongly scatter phonons. When using Tl to substitute Al, the vibration frequency of the Tl dopant is only 1/3 of that of the substituted Al atom. The significantly decreased vibration frequency will introduce a low phonon band within the PDOS, which will suppress the lattice thermal conductivity. Our work not only elucidates the physical mechanism of low lattice thermal conductivity in Ca
AlSb
and Ca
Al
Sb
Zintl compounds, but also offers an efficient approach (breaking the covalent tetrahedral chains) to further block the heat transport. |
doi_str_mv | 10.1039/D4CP03574G |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4CP03574G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39523952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582-5a229753c2eac7a655975b5f6383fa56e555eb58f43956ffd58b602eb33dbce63</originalsourceid><addsrcrecordid>eNpFUNFKwzAUDaK4OX3xAyTPQjVtetP2cVSdQkHBvZebNHWRNhtpNtnfmzqdD5dzzuVwLvcQch2zu5jx4v4hLd8YhyxdnJBpnAoeFSxPT488ExNyMQyfjLEYYn5OJryAZJwp-arQe6M09SvteuyoWttmq7zZGb-nTv_wtaXG0hIpp_PuXQZA24wagqYJDStB5Z72aM1m26E39mMMDGE77LT11GvvcKUbN15YobGX5KzFbtBXvzgjy6fHZfkcVa-Ll3JeRQryJAJMkiIDrhKNKkMBEJSEVvCctwhCA4CWkLdp-Ea0bQO5FCzRkvNGKi34jNweYpVbD4PTbb1xpke3r2NWj-XV_-UF883BvNnKXjdH619b_BvheWiq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice thermal conductivity reduction in Ca 3 AlSb 3 and Ca 5 Al 2 Sb 6 by manipulating the covalent tetrahedral chain</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Chi ; Zhai, Wenya ; Li, Jingyu ; Zhu, Jianbo ; Ou, Zengfu ; Li, Lanwei ; Liu, Peng-Fei ; Liu, Xiaobing ; Yan, Yuli ; Zhang, Yongsheng</creator><creatorcontrib>Zhang, Chi ; Zhai, Wenya ; Li, Jingyu ; Zhu, Jianbo ; Ou, Zengfu ; Li, Lanwei ; Liu, Peng-Fei ; Liu, Xiaobing ; Yan, Yuli ; Zhang, Yongsheng</creatorcontrib><description>Understanding the structural and physical origins of low thermal conductivity is critical to improving and designing efficient thermoelectric materials. For two distinct Zintl Ca-Al-Sb compounds with different stoichiometric ratios (Ca
AlSb
and Ca
Al
Sb
), experimental measurements suggest the low lattice thermal conductivities (∼1.43 W mK
for Ca
AlSb
and 1.52 W mK
for Ca
Al
Sb
at 300 K). In order to understand the physical origin of the low thermal conductivity, we present the first-principles studies on the lattice dynamics and phonon-transport properties. The theoretically calculated lattice thermal conductivity of Ca
AlSb
and Ca
Al
Sb
is ∼1.61 W mK
for Ca
AlSb
and 1.85 W mK
for Ca
Al
Sb
at 300 K, which is in reasonable agreement with the experimental measurements. The low lattice thermal conductivity is attributed to the low acoustic Debye temperature and strong optical-acoustic phonon couplings in the two Ca-Al-Sb compounds. It is worth noting that the thermal conductivity of Ca
AlSb
and Ca
Al
Sb
along the
direction (along the Al-Sb chain) is obviously higher than that along the
/
direction (perpendicular to the chain). The high lattice thermal conductivity along the Al-Sb chain is due to the strong Al-Sb covalent bond. From the phonon density of states (PDOS), the obviously frequency regions dominated by different atoms suggest that forming defects with one atom would only shift its related PDOS and might not affect the PDOS of others. Based on the understandings of the crystal structure, PDOS and atomic displacement parameter, we represent a methodology to further lower their lattice thermal conductivity: substituting heavier atoms along the Al-Sb chain to strongly scatter phonons. When using Tl to substitute Al, the vibration frequency of the Tl dopant is only 1/3 of that of the substituted Al atom. The significantly decreased vibration frequency will introduce a low phonon band within the PDOS, which will suppress the lattice thermal conductivity. Our work not only elucidates the physical mechanism of low lattice thermal conductivity in Ca
AlSb
and Ca
Al
Sb
Zintl compounds, but also offers an efficient approach (breaking the covalent tetrahedral chains) to further block the heat transport.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/D4CP03574G</identifier><identifier>PMID: 39523952</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2024-11, Vol.26 (45), p.28595-28605</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c582-5a229753c2eac7a655975b5f6383fa56e555eb58f43956ffd58b602eb33dbce63</cites><orcidid>0000-0003-0839-4182 ; 0000-0002-9170-5238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39523952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Zhai, Wenya</creatorcontrib><creatorcontrib>Li, Jingyu</creatorcontrib><creatorcontrib>Zhu, Jianbo</creatorcontrib><creatorcontrib>Ou, Zengfu</creatorcontrib><creatorcontrib>Li, Lanwei</creatorcontrib><creatorcontrib>Liu, Peng-Fei</creatorcontrib><creatorcontrib>Liu, Xiaobing</creatorcontrib><creatorcontrib>Yan, Yuli</creatorcontrib><creatorcontrib>Zhang, Yongsheng</creatorcontrib><title>Lattice thermal conductivity reduction in Ca 3 AlSb 3 and Ca 5 Al 2 Sb 6 by manipulating the covalent tetrahedral chain</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Understanding the structural and physical origins of low thermal conductivity is critical to improving and designing efficient thermoelectric materials. For two distinct Zintl Ca-Al-Sb compounds with different stoichiometric ratios (Ca
AlSb
and Ca
Al
Sb
), experimental measurements suggest the low lattice thermal conductivities (∼1.43 W mK
for Ca
AlSb
and 1.52 W mK
for Ca
Al
Sb
at 300 K). In order to understand the physical origin of the low thermal conductivity, we present the first-principles studies on the lattice dynamics and phonon-transport properties. The theoretically calculated lattice thermal conductivity of Ca
AlSb
and Ca
Al
Sb
is ∼1.61 W mK
for Ca
AlSb
and 1.85 W mK
for Ca
Al
Sb
at 300 K, which is in reasonable agreement with the experimental measurements. The low lattice thermal conductivity is attributed to the low acoustic Debye temperature and strong optical-acoustic phonon couplings in the two Ca-Al-Sb compounds. It is worth noting that the thermal conductivity of Ca
AlSb
and Ca
Al
Sb
along the
direction (along the Al-Sb chain) is obviously higher than that along the
/
direction (perpendicular to the chain). The high lattice thermal conductivity along the Al-Sb chain is due to the strong Al-Sb covalent bond. From the phonon density of states (PDOS), the obviously frequency regions dominated by different atoms suggest that forming defects with one atom would only shift its related PDOS and might not affect the PDOS of others. Based on the understandings of the crystal structure, PDOS and atomic displacement parameter, we represent a methodology to further lower their lattice thermal conductivity: substituting heavier atoms along the Al-Sb chain to strongly scatter phonons. When using Tl to substitute Al, the vibration frequency of the Tl dopant is only 1/3 of that of the substituted Al atom. The significantly decreased vibration frequency will introduce a low phonon band within the PDOS, which will suppress the lattice thermal conductivity. Our work not only elucidates the physical mechanism of low lattice thermal conductivity in Ca
AlSb
and Ca
Al
Sb
Zintl compounds, but also offers an efficient approach (breaking the covalent tetrahedral chains) to further block the heat transport.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFUNFKwzAUDaK4OX3xAyTPQjVtetP2cVSdQkHBvZebNHWRNhtpNtnfmzqdD5dzzuVwLvcQch2zu5jx4v4hLd8YhyxdnJBpnAoeFSxPT488ExNyMQyfjLEYYn5OJryAZJwp-arQe6M09SvteuyoWttmq7zZGb-nTv_wtaXG0hIpp_PuXQZA24wagqYJDStB5Z72aM1m26E39mMMDGE77LT11GvvcKUbN15YobGX5KzFbtBXvzgjy6fHZfkcVa-Ll3JeRQryJAJMkiIDrhKNKkMBEJSEVvCctwhCA4CWkLdp-Ea0bQO5FCzRkvNGKi34jNweYpVbD4PTbb1xpke3r2NWj-XV_-UF883BvNnKXjdH619b_BvheWiq</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Zhang, Chi</creator><creator>Zhai, Wenya</creator><creator>Li, Jingyu</creator><creator>Zhu, Jianbo</creator><creator>Ou, Zengfu</creator><creator>Li, Lanwei</creator><creator>Liu, Peng-Fei</creator><creator>Liu, Xiaobing</creator><creator>Yan, Yuli</creator><creator>Zhang, Yongsheng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0839-4182</orcidid><orcidid>https://orcid.org/0000-0002-9170-5238</orcidid></search><sort><creationdate>20241120</creationdate><title>Lattice thermal conductivity reduction in Ca 3 AlSb 3 and Ca 5 Al 2 Sb 6 by manipulating the covalent tetrahedral chain</title><author>Zhang, Chi ; Zhai, Wenya ; Li, Jingyu ; Zhu, Jianbo ; Ou, Zengfu ; Li, Lanwei ; Liu, Peng-Fei ; Liu, Xiaobing ; Yan, Yuli ; Zhang, Yongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582-5a229753c2eac7a655975b5f6383fa56e555eb58f43956ffd58b602eb33dbce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Zhai, Wenya</creatorcontrib><creatorcontrib>Li, Jingyu</creatorcontrib><creatorcontrib>Zhu, Jianbo</creatorcontrib><creatorcontrib>Ou, Zengfu</creatorcontrib><creatorcontrib>Li, Lanwei</creatorcontrib><creatorcontrib>Liu, Peng-Fei</creatorcontrib><creatorcontrib>Liu, Xiaobing</creatorcontrib><creatorcontrib>Yan, Yuli</creatorcontrib><creatorcontrib>Zhang, Yongsheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chi</au><au>Zhai, Wenya</au><au>Li, Jingyu</au><au>Zhu, Jianbo</au><au>Ou, Zengfu</au><au>Li, Lanwei</au><au>Liu, Peng-Fei</au><au>Liu, Xiaobing</au><au>Yan, Yuli</au><au>Zhang, Yongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice thermal conductivity reduction in Ca 3 AlSb 3 and Ca 5 Al 2 Sb 6 by manipulating the covalent tetrahedral chain</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-11-20</date><risdate>2024</risdate><volume>26</volume><issue>45</issue><spage>28595</spage><epage>28605</epage><pages>28595-28605</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Understanding the structural and physical origins of low thermal conductivity is critical to improving and designing efficient thermoelectric materials. For two distinct Zintl Ca-Al-Sb compounds with different stoichiometric ratios (Ca
AlSb
and Ca
Al
Sb
), experimental measurements suggest the low lattice thermal conductivities (∼1.43 W mK
for Ca
AlSb
and 1.52 W mK
for Ca
Al
Sb
at 300 K). In order to understand the physical origin of the low thermal conductivity, we present the first-principles studies on the lattice dynamics and phonon-transport properties. The theoretically calculated lattice thermal conductivity of Ca
AlSb
and Ca
Al
Sb
is ∼1.61 W mK
for Ca
AlSb
and 1.85 W mK
for Ca
Al
Sb
at 300 K, which is in reasonable agreement with the experimental measurements. The low lattice thermal conductivity is attributed to the low acoustic Debye temperature and strong optical-acoustic phonon couplings in the two Ca-Al-Sb compounds. It is worth noting that the thermal conductivity of Ca
AlSb
and Ca
Al
Sb
along the
direction (along the Al-Sb chain) is obviously higher than that along the
/
direction (perpendicular to the chain). The high lattice thermal conductivity along the Al-Sb chain is due to the strong Al-Sb covalent bond. From the phonon density of states (PDOS), the obviously frequency regions dominated by different atoms suggest that forming defects with one atom would only shift its related PDOS and might not affect the PDOS of others. Based on the understandings of the crystal structure, PDOS and atomic displacement parameter, we represent a methodology to further lower their lattice thermal conductivity: substituting heavier atoms along the Al-Sb chain to strongly scatter phonons. When using Tl to substitute Al, the vibration frequency of the Tl dopant is only 1/3 of that of the substituted Al atom. The significantly decreased vibration frequency will introduce a low phonon band within the PDOS, which will suppress the lattice thermal conductivity. Our work not only elucidates the physical mechanism of low lattice thermal conductivity in Ca
AlSb
and Ca
Al
Sb
Zintl compounds, but also offers an efficient approach (breaking the covalent tetrahedral chains) to further block the heat transport.</abstract><cop>England</cop><pmid>39523952</pmid><doi>10.1039/D4CP03574G</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0839-4182</orcidid><orcidid>https://orcid.org/0000-0002-9170-5238</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-11, Vol.26 (45), p.28595-28605 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4CP03574G |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
title | Lattice thermal conductivity reduction in Ca 3 AlSb 3 and Ca 5 Al 2 Sb 6 by manipulating the covalent tetrahedral chain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20thermal%20conductivity%20reduction%20in%20Ca%203%20AlSb%203%20and%20Ca%205%20Al%202%20Sb%206%20by%20manipulating%20the%20covalent%20tetrahedral%20chain&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Zhang,%20Chi&rft.date=2024-11-20&rft.volume=26&rft.issue=45&rft.spage=28595&rft.epage=28605&rft.pages=28595-28605&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/D4CP03574G&rft_dat=%3Cpubmed_cross%3E39523952%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39523952&rfr_iscdi=true |