Is surface modification effective to stabilize high-voltage cycling for layered P2-Na 2/3 Ni 1/3 Mn 2/3 O 2 cathodes?

Layered transition metal oxides (TMOs), like the P2-type Na Ni Mn O , are promising cathodes for sodium-ion batteries but suffer rapid capacity degradation at high voltages. Surface engineering is a popular strategy to modify the high-voltage stability of cathode materials, yet its efficacy for sodi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2024-10, Vol.60 (81), p.11544-11547
Hauptverfasser: Niu, Fangzhou, Qiao, Linna, Huang, Heran, Odero, Elninoh A, Zhou, Guangwen, Liu, Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Layered transition metal oxides (TMOs), like the P2-type Na Ni Mn O , are promising cathodes for sodium-ion batteries but suffer rapid capacity degradation at high voltages. Surface engineering is a popular strategy to modify the high-voltage stability of cathode materials, yet its efficacy for sodium layered TMOs remains elusive, especially given the deleterious layer-gliding phase transition during high-voltage operation. Here, we examined the effect of surface coatings on the high-voltage cycling stability of Na Ni Mn O , finding that they suppress high-voltage polarization but do not significantly affect capacity retention, which is mainly impacted by bulk structure degradation. Hence, surface engineering must be complemented with bulk structure modification to stabilize high-voltage cycling.
ISSN:1359-7345
1364-548X
DOI:10.1039/D4CC02819H