Splittable systems in biomedical applications
Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pai...
Gespeichert in:
Veröffentlicht in: | Biomaterials science 2024-08, Vol.12 (16), p.413-4116 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4116 |
---|---|
container_issue | 16 |
container_start_page | 413 |
container_title | Biomaterials science |
container_volume | 12 |
creator | Yuan, Sichen Bremmer, Alexa Yang, Xicheng Li, Jiayue Hu, Quanyin |
description | Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.
Splittable systems divide active molecules into inactive parts that recombine under specific conditions for versatile biomedical uses. Applications include immunotherapy, gene editing, prodrug activation, synthetic biology, and biosensing. |
doi_str_mv | 10.1039/d4bm00709c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4BM00709C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081299572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-50304c6e96bb9582770a484e8b77a7552597adc73002f04c1416511071e683ef3</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_Agii21F-_KghcRVifvzVHXJ1Q8qOclSbOQsi83u4d-e1NbK5jLDMyPYfgHoVMM1xioulkyUwNIUPYATQkwmbKMqcN9T2GC5iGsID4pFQh8jCZUASYEiylK37vKD4M2lUvCOgyuDolvEuPb2i291VWiuyisHnzbhBN0VOoquPmuztDn48NH_pwu3p5e8ttFaokSQ8qBArPCKWGM4hmREnS8ymVGSi05J1xJvbSSApAySsyw4BiDxE5k1JV0hi63e7u-_RpdGIraB-uqSjeuHUNBIcNEKS5JpBf_6Kod-yZet1GKcqY4jepqq2zfhtC7suh6X-t-XWAoNjkW9-zu9SfHPOLz3crRxBT29De1CM62oA92P_37CPoNu-xzjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089354953</pqid></control><display><type>article</type><title>Splittable systems in biomedical applications</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yuan, Sichen ; Bremmer, Alexa ; Yang, Xicheng ; Li, Jiayue ; Hu, Quanyin</creator><creatorcontrib>Yuan, Sichen ; Bremmer, Alexa ; Yang, Xicheng ; Li, Jiayue ; Hu, Quanyin</creatorcontrib><description>Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.
Splittable systems divide active molecules into inactive parts that recombine under specific conditions for versatile biomedical uses. Applications include immunotherapy, gene editing, prodrug activation, synthetic biology, and biosensing.</description><identifier>ISSN: 2047-4830</identifier><identifier>ISSN: 2047-4849</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/d4bm00709c</identifier><identifier>PMID: 39012216</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Biological activity ; Biomedical materials ; Biosensing Techniques ; Control systems ; Decoupling ; Fragments ; Functionals ; Gene Editing ; Genetic modification ; Humans ; Immunotherapy ; Modularity ; Prodrugs - chemistry ; Robust control ; Robust design ; Synthetic Biology</subject><ispartof>Biomaterials science, 2024-08, Vol.12 (16), p.413-4116</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-50304c6e96bb9582770a484e8b77a7552597adc73002f04c1416511071e683ef3</cites><orcidid>0000-0003-2946-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39012216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Sichen</creatorcontrib><creatorcontrib>Bremmer, Alexa</creatorcontrib><creatorcontrib>Yang, Xicheng</creatorcontrib><creatorcontrib>Li, Jiayue</creatorcontrib><creatorcontrib>Hu, Quanyin</creatorcontrib><title>Splittable systems in biomedical applications</title><title>Biomaterials science</title><addtitle>Biomater Sci</addtitle><description>Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.
Splittable systems divide active molecules into inactive parts that recombine under specific conditions for versatile biomedical uses. Applications include immunotherapy, gene editing, prodrug activation, synthetic biology, and biosensing.</description><subject>Animals</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biosensing Techniques</subject><subject>Control systems</subject><subject>Decoupling</subject><subject>Fragments</subject><subject>Functionals</subject><subject>Gene Editing</subject><subject>Genetic modification</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Modularity</subject><subject>Prodrugs - chemistry</subject><subject>Robust control</subject><subject>Robust design</subject><subject>Synthetic Biology</subject><issn>2047-4830</issn><issn>2047-4849</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0UtLAzEQB_Agii21F-_KghcRVifvzVHXJ1Q8qOclSbOQsi83u4d-e1NbK5jLDMyPYfgHoVMM1xioulkyUwNIUPYATQkwmbKMqcN9T2GC5iGsID4pFQh8jCZUASYEiylK37vKD4M2lUvCOgyuDolvEuPb2i291VWiuyisHnzbhBN0VOoquPmuztDn48NH_pwu3p5e8ttFaokSQ8qBArPCKWGM4hmREnS8ymVGSi05J1xJvbSSApAySsyw4BiDxE5k1JV0hi63e7u-_RpdGIraB-uqSjeuHUNBIcNEKS5JpBf_6Kod-yZet1GKcqY4jepqq2zfhtC7suh6X-t-XWAoNjkW9-zu9SfHPOLz3crRxBT29De1CM62oA92P_37CPoNu-xzjA</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Yuan, Sichen</creator><creator>Bremmer, Alexa</creator><creator>Yang, Xicheng</creator><creator>Li, Jiayue</creator><creator>Hu, Quanyin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2946-1655</orcidid></search><sort><creationdate>20240806</creationdate><title>Splittable systems in biomedical applications</title><author>Yuan, Sichen ; Bremmer, Alexa ; Yang, Xicheng ; Li, Jiayue ; Hu, Quanyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-50304c6e96bb9582770a484e8b77a7552597adc73002f04c1416511071e683ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biosensing Techniques</topic><topic>Control systems</topic><topic>Decoupling</topic><topic>Fragments</topic><topic>Functionals</topic><topic>Gene Editing</topic><topic>Genetic modification</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Modularity</topic><topic>Prodrugs - chemistry</topic><topic>Robust control</topic><topic>Robust design</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Sichen</creatorcontrib><creatorcontrib>Bremmer, Alexa</creatorcontrib><creatorcontrib>Yang, Xicheng</creatorcontrib><creatorcontrib>Li, Jiayue</creatorcontrib><creatorcontrib>Hu, Quanyin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Sichen</au><au>Bremmer, Alexa</au><au>Yang, Xicheng</au><au>Li, Jiayue</au><au>Hu, Quanyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Splittable systems in biomedical applications</atitle><jtitle>Biomaterials science</jtitle><addtitle>Biomater Sci</addtitle><date>2024-08-06</date><risdate>2024</risdate><volume>12</volume><issue>16</issue><spage>413</spage><epage>4116</epage><pages>413-4116</pages><issn>2047-4830</issn><issn>2047-4849</issn><eissn>2047-4849</eissn><abstract>Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.
Splittable systems divide active molecules into inactive parts that recombine under specific conditions for versatile biomedical uses. Applications include immunotherapy, gene editing, prodrug activation, synthetic biology, and biosensing.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39012216</pmid><doi>10.1039/d4bm00709c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2946-1655</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-4830 |
ispartof | Biomaterials science, 2024-08, Vol.12 (16), p.413-4116 |
issn | 2047-4830 2047-4849 2047-4849 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4BM00709C |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Animals Biological activity Biomedical materials Biosensing Techniques Control systems Decoupling Fragments Functionals Gene Editing Genetic modification Humans Immunotherapy Modularity Prodrugs - chemistry Robust control Robust design Synthetic Biology |
title | Splittable systems in biomedical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Splittable%20systems%20in%20biomedical%20applications&rft.jtitle=Biomaterials%20science&rft.au=Yuan,%20Sichen&rft.date=2024-08-06&rft.volume=12&rft.issue=16&rft.spage=413&rft.epage=4116&rft.pages=413-4116&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/d4bm00709c&rft_dat=%3Cproquest_cross%3E3081299572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089354953&rft_id=info:pmid/39012216&rfr_iscdi=true |