Splittable systems in biomedical applications

Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2024-08, Vol.12 (16), p.413-4116
Hauptverfasser: Yuan, Sichen, Bremmer, Alexa, Yang, Xicheng, Li, Jiayue, Hu, Quanyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4116
container_issue 16
container_start_page 413
container_title Biomaterials science
container_volume 12
creator Yuan, Sichen
Bremmer, Alexa
Yang, Xicheng
Li, Jiayue
Hu, Quanyin
description Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology. Splittable systems divide active molecules into inactive parts that recombine under specific conditions for versatile biomedical uses. Applications include immunotherapy, gene editing, prodrug activation, synthetic biology, and biosensing.
doi_str_mv 10.1039/d4bm00709c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4BM00709C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081299572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-50304c6e96bb9582770a484e8b77a7552597adc73002f04c1416511071e683ef3</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_Agii21F-_KghcRVifvzVHXJ1Q8qOclSbOQsi83u4d-e1NbK5jLDMyPYfgHoVMM1xioulkyUwNIUPYATQkwmbKMqcN9T2GC5iGsID4pFQh8jCZUASYEiylK37vKD4M2lUvCOgyuDolvEuPb2i291VWiuyisHnzbhBN0VOoquPmuztDn48NH_pwu3p5e8ttFaokSQ8qBArPCKWGM4hmREnS8ymVGSi05J1xJvbSSApAySsyw4BiDxE5k1JV0hi63e7u-_RpdGIraB-uqSjeuHUNBIcNEKS5JpBf_6Kod-yZet1GKcqY4jepqq2zfhtC7suh6X-t-XWAoNjkW9-zu9SfHPOLz3crRxBT29De1CM62oA92P_37CPoNu-xzjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089354953</pqid></control><display><type>article</type><title>Splittable systems in biomedical applications</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yuan, Sichen ; Bremmer, Alexa ; Yang, Xicheng ; Li, Jiayue ; Hu, Quanyin</creator><creatorcontrib>Yuan, Sichen ; Bremmer, Alexa ; Yang, Xicheng ; Li, Jiayue ; Hu, Quanyin</creatorcontrib><description>Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology. Splittable systems divide active molecules into inactive parts that recombine under specific conditions for versatile biomedical uses. Applications include immunotherapy, gene editing, prodrug activation, synthetic biology, and biosensing.</description><identifier>ISSN: 2047-4830</identifier><identifier>ISSN: 2047-4849</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/d4bm00709c</identifier><identifier>PMID: 39012216</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Biological activity ; Biomedical materials ; Biosensing Techniques ; Control systems ; Decoupling ; Fragments ; Functionals ; Gene Editing ; Genetic modification ; Humans ; Immunotherapy ; Modularity ; Prodrugs - chemistry ; Robust control ; Robust design ; Synthetic Biology</subject><ispartof>Biomaterials science, 2024-08, Vol.12 (16), p.413-4116</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-50304c6e96bb9582770a484e8b77a7552597adc73002f04c1416511071e683ef3</cites><orcidid>0000-0003-2946-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39012216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Sichen</creatorcontrib><creatorcontrib>Bremmer, Alexa</creatorcontrib><creatorcontrib>Yang, Xicheng</creatorcontrib><creatorcontrib>Li, Jiayue</creatorcontrib><creatorcontrib>Hu, Quanyin</creatorcontrib><title>Splittable systems in biomedical applications</title><title>Biomaterials science</title><addtitle>Biomater Sci</addtitle><description>Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology. Splittable systems divide active molecules into inactive parts that recombine under specific conditions for versatile biomedical uses. Applications include immunotherapy, gene editing, prodrug activation, synthetic biology, and biosensing.</description><subject>Animals</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biosensing Techniques</subject><subject>Control systems</subject><subject>Decoupling</subject><subject>Fragments</subject><subject>Functionals</subject><subject>Gene Editing</subject><subject>Genetic modification</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Modularity</subject><subject>Prodrugs - chemistry</subject><subject>Robust control</subject><subject>Robust design</subject><subject>Synthetic Biology</subject><issn>2047-4830</issn><issn>2047-4849</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0UtLAzEQB_Agii21F-_KghcRVifvzVHXJ1Q8qOclSbOQsi83u4d-e1NbK5jLDMyPYfgHoVMM1xioulkyUwNIUPYATQkwmbKMqcN9T2GC5iGsID4pFQh8jCZUASYEiylK37vKD4M2lUvCOgyuDolvEuPb2i291VWiuyisHnzbhBN0VOoquPmuztDn48NH_pwu3p5e8ttFaokSQ8qBArPCKWGM4hmREnS8ymVGSi05J1xJvbSSApAySsyw4BiDxE5k1JV0hi63e7u-_RpdGIraB-uqSjeuHUNBIcNEKS5JpBf_6Kod-yZet1GKcqY4jepqq2zfhtC7suh6X-t-XWAoNjkW9-zu9SfHPOLz3crRxBT29De1CM62oA92P_37CPoNu-xzjA</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Yuan, Sichen</creator><creator>Bremmer, Alexa</creator><creator>Yang, Xicheng</creator><creator>Li, Jiayue</creator><creator>Hu, Quanyin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2946-1655</orcidid></search><sort><creationdate>20240806</creationdate><title>Splittable systems in biomedical applications</title><author>Yuan, Sichen ; Bremmer, Alexa ; Yang, Xicheng ; Li, Jiayue ; Hu, Quanyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-50304c6e96bb9582770a484e8b77a7552597adc73002f04c1416511071e683ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biosensing Techniques</topic><topic>Control systems</topic><topic>Decoupling</topic><topic>Fragments</topic><topic>Functionals</topic><topic>Gene Editing</topic><topic>Genetic modification</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Modularity</topic><topic>Prodrugs - chemistry</topic><topic>Robust control</topic><topic>Robust design</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Sichen</creatorcontrib><creatorcontrib>Bremmer, Alexa</creatorcontrib><creatorcontrib>Yang, Xicheng</creatorcontrib><creatorcontrib>Li, Jiayue</creatorcontrib><creatorcontrib>Hu, Quanyin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Sichen</au><au>Bremmer, Alexa</au><au>Yang, Xicheng</au><au>Li, Jiayue</au><au>Hu, Quanyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Splittable systems in biomedical applications</atitle><jtitle>Biomaterials science</jtitle><addtitle>Biomater Sci</addtitle><date>2024-08-06</date><risdate>2024</risdate><volume>12</volume><issue>16</issue><spage>413</spage><epage>4116</epage><pages>413-4116</pages><issn>2047-4830</issn><issn>2047-4849</issn><eissn>2047-4849</eissn><abstract>Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology. Splittable systems divide active molecules into inactive parts that recombine under specific conditions for versatile biomedical uses. Applications include immunotherapy, gene editing, prodrug activation, synthetic biology, and biosensing.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39012216</pmid><doi>10.1039/d4bm00709c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2946-1655</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2047-4830
ispartof Biomaterials science, 2024-08, Vol.12 (16), p.413-4116
issn 2047-4830
2047-4849
2047-4849
language eng
recordid cdi_crossref_primary_10_1039_D4BM00709C
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Animals
Biological activity
Biomedical materials
Biosensing Techniques
Control systems
Decoupling
Fragments
Functionals
Gene Editing
Genetic modification
Humans
Immunotherapy
Modularity
Prodrugs - chemistry
Robust control
Robust design
Synthetic Biology
title Splittable systems in biomedical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Splittable%20systems%20in%20biomedical%20applications&rft.jtitle=Biomaterials%20science&rft.au=Yuan,%20Sichen&rft.date=2024-08-06&rft.volume=12&rft.issue=16&rft.spage=413&rft.epage=4116&rft.pages=413-4116&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/d4bm00709c&rft_dat=%3Cproquest_cross%3E3081299572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089354953&rft_id=info:pmid/39012216&rfr_iscdi=true