Interfacial chemistry regulation using functional frameworks for stable metal batteries
Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-02, Vol.12 (9), p.58-599 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | 9 |
container_start_page | 58 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Huang, Yaohui Geng, Jiarun Zhang, Tong Jiang, Zhuoliang Fang, Hengyi Hu, Wei Li, Fujun |
description | Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety concerns and performance decay in RMBs. Constructing functional frameworks on metal anodes has been demonstrated for achieving stable interfacial chemistry. The frameworks can regulate cation desolvation and substrate metallic affinity to provide sufficient ion flux and abundant nucleation sites, thus realizing uniform metal deposition and dendrite suppression. This review focuses on material engineering in functional frameworks to improve reversible interfacial reactions. Furthermore, porous crystalline frameworks (PCFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolites, are considered to tailor the solvation sheath and accelerate cation desolvation. Three-dimensional inorganic frameworks (IOFs), such as metal-based and carbon-based materials, are introduced to enhance ionic diffusion and metal nucleation for enhanced metal plating. Additionally, an outlook on the design strategies and challenges in the development of framework materials is provided for the future development of practical RMBs.
Recent advances on functional framework materials, including PCFs and IOFs, are summarized to regulate interfacial chemistry in metal batteries, which facilitate cation desolvation and metal nucleation for improved electrochemical performance. |
doi_str_mv | 10.1039/d3ta07229k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA07229K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931973323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-5f608a83d667ae5ca3dc9e110f9016c76cbd4a477e347ca804da9a607b576d583</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E12ezm41iq1WLBS8XjMptN6rb7UZMs0n9vaqXOZWaYh5fhQeiakntKmHqoWAAi0lRtz9AoJTlJRKb4-WmW8hJNvN-QWJIQrtQIfSy6YJwFXUOD9adpax_cHjuzHhoIdd_hwdfdGtuh04c1UtZBa757t_XY9g77AGVjcGtCvJUQYlxt_BW6sNB4M_nrY_Q-f1rNXpLl2_NiNl0mOpU0JLnlRIJkFecCTK6BVVoZSolVhHItuC6rDDIhDMuEBkmyChRwIspc8CqXbIxuj7k7138Nxodi0w8uvumLVDGqBGMpi9TdkdKu994ZW-xc3YLbF5QUB3fFI1tNf929RvjmCDuvT9y_W_YDgN1saQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931973323</pqid></control><display><type>article</type><title>Interfacial chemistry regulation using functional frameworks for stable metal batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Yaohui ; Geng, Jiarun ; Zhang, Tong ; Jiang, Zhuoliang ; Fang, Hengyi ; Hu, Wei ; Li, Fujun</creator><creatorcontrib>Huang, Yaohui ; Geng, Jiarun ; Zhang, Tong ; Jiang, Zhuoliang ; Fang, Hengyi ; Hu, Wei ; Li, Fujun</creatorcontrib><description>Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety concerns and performance decay in RMBs. Constructing functional frameworks on metal anodes has been demonstrated for achieving stable interfacial chemistry. The frameworks can regulate cation desolvation and substrate metallic affinity to provide sufficient ion flux and abundant nucleation sites, thus realizing uniform metal deposition and dendrite suppression. This review focuses on material engineering in functional frameworks to improve reversible interfacial reactions. Furthermore, porous crystalline frameworks (PCFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolites, are considered to tailor the solvation sheath and accelerate cation desolvation. Three-dimensional inorganic frameworks (IOFs), such as metal-based and carbon-based materials, are introduced to enhance ionic diffusion and metal nucleation for enhanced metal plating. Additionally, an outlook on the design strategies and challenges in the development of framework materials is provided for the future development of practical RMBs.
Recent advances on functional framework materials, including PCFs and IOFs, are summarized to regulate interfacial chemistry in metal batteries, which facilitate cation desolvation and metal nucleation for improved electrochemical performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta07229k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Cations ; Electrolytes ; Energy storage ; Interface reactions ; Ion diffusion ; Ion flux ; Metal-organic frameworks ; Metals ; Nucleation ; Pollutant deposition ; Rechargeable batteries ; Sheaths ; Solvation ; Substrates ; Zeolites</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (9), p.58-599</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-5f608a83d667ae5ca3dc9e110f9016c76cbd4a477e347ca804da9a607b576d583</citedby><cites>FETCH-LOGICAL-c281t-5f608a83d667ae5ca3dc9e110f9016c76cbd4a477e347ca804da9a607b576d583</cites><orcidid>0000-0002-7174-3990 ; 0000-0002-9037-8263 ; 0000-0002-1298-0267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Yaohui</creatorcontrib><creatorcontrib>Geng, Jiarun</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Jiang, Zhuoliang</creatorcontrib><creatorcontrib>Fang, Hengyi</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Li, Fujun</creatorcontrib><title>Interfacial chemistry regulation using functional frameworks for stable metal batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety concerns and performance decay in RMBs. Constructing functional frameworks on metal anodes has been demonstrated for achieving stable interfacial chemistry. The frameworks can regulate cation desolvation and substrate metallic affinity to provide sufficient ion flux and abundant nucleation sites, thus realizing uniform metal deposition and dendrite suppression. This review focuses on material engineering in functional frameworks to improve reversible interfacial reactions. Furthermore, porous crystalline frameworks (PCFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolites, are considered to tailor the solvation sheath and accelerate cation desolvation. Three-dimensional inorganic frameworks (IOFs), such as metal-based and carbon-based materials, are introduced to enhance ionic diffusion and metal nucleation for enhanced metal plating. Additionally, an outlook on the design strategies and challenges in the development of framework materials is provided for the future development of practical RMBs.
Recent advances on functional framework materials, including PCFs and IOFs, are summarized to regulate interfacial chemistry in metal batteries, which facilitate cation desolvation and metal nucleation for improved electrochemical performance.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Cations</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Interface reactions</subject><subject>Ion diffusion</subject><subject>Ion flux</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Nucleation</subject><subject>Pollutant deposition</subject><subject>Rechargeable batteries</subject><subject>Sheaths</subject><subject>Solvation</subject><subject>Substrates</subject><subject>Zeolites</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E12ezm41iq1WLBS8XjMptN6rb7UZMs0n9vaqXOZWaYh5fhQeiakntKmHqoWAAi0lRtz9AoJTlJRKb4-WmW8hJNvN-QWJIQrtQIfSy6YJwFXUOD9adpax_cHjuzHhoIdd_hwdfdGtuh04c1UtZBa757t_XY9g77AGVjcGtCvJUQYlxt_BW6sNB4M_nrY_Q-f1rNXpLl2_NiNl0mOpU0JLnlRIJkFecCTK6BVVoZSolVhHItuC6rDDIhDMuEBkmyChRwIspc8CqXbIxuj7k7138Nxodi0w8uvumLVDGqBGMpi9TdkdKu994ZW-xc3YLbF5QUB3fFI1tNf929RvjmCDuvT9y_W_YDgN1saQ</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Huang, Yaohui</creator><creator>Geng, Jiarun</creator><creator>Zhang, Tong</creator><creator>Jiang, Zhuoliang</creator><creator>Fang, Hengyi</creator><creator>Hu, Wei</creator><creator>Li, Fujun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7174-3990</orcidid><orcidid>https://orcid.org/0000-0002-9037-8263</orcidid><orcidid>https://orcid.org/0000-0002-1298-0267</orcidid></search><sort><creationdate>20240227</creationdate><title>Interfacial chemistry regulation using functional frameworks for stable metal batteries</title><author>Huang, Yaohui ; Geng, Jiarun ; Zhang, Tong ; Jiang, Zhuoliang ; Fang, Hengyi ; Hu, Wei ; Li, Fujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-5f608a83d667ae5ca3dc9e110f9016c76cbd4a477e347ca804da9a607b576d583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Cations</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Interface reactions</topic><topic>Ion diffusion</topic><topic>Ion flux</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Nucleation</topic><topic>Pollutant deposition</topic><topic>Rechargeable batteries</topic><topic>Sheaths</topic><topic>Solvation</topic><topic>Substrates</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yaohui</creatorcontrib><creatorcontrib>Geng, Jiarun</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Jiang, Zhuoliang</creatorcontrib><creatorcontrib>Fang, Hengyi</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Li, Fujun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yaohui</au><au>Geng, Jiarun</au><au>Zhang, Tong</au><au>Jiang, Zhuoliang</au><au>Fang, Hengyi</au><au>Hu, Wei</au><au>Li, Fujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial chemistry regulation using functional frameworks for stable metal batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-02-27</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>58</spage><epage>599</epage><pages>58-599</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety concerns and performance decay in RMBs. Constructing functional frameworks on metal anodes has been demonstrated for achieving stable interfacial chemistry. The frameworks can regulate cation desolvation and substrate metallic affinity to provide sufficient ion flux and abundant nucleation sites, thus realizing uniform metal deposition and dendrite suppression. This review focuses on material engineering in functional frameworks to improve reversible interfacial reactions. Furthermore, porous crystalline frameworks (PCFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolites, are considered to tailor the solvation sheath and accelerate cation desolvation. Three-dimensional inorganic frameworks (IOFs), such as metal-based and carbon-based materials, are introduced to enhance ionic diffusion and metal nucleation for enhanced metal plating. Additionally, an outlook on the design strategies and challenges in the development of framework materials is provided for the future development of practical RMBs.
Recent advances on functional framework materials, including PCFs and IOFs, are summarized to regulate interfacial chemistry in metal batteries, which facilitate cation desolvation and metal nucleation for improved electrochemical performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta07229k</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-7174-3990</orcidid><orcidid>https://orcid.org/0000-0002-9037-8263</orcidid><orcidid>https://orcid.org/0000-0002-1298-0267</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (9), p.58-599 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3TA07229K |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Batteries Cations Electrolytes Energy storage Interface reactions Ion diffusion Ion flux Metal-organic frameworks Metals Nucleation Pollutant deposition Rechargeable batteries Sheaths Solvation Substrates Zeolites |
title | Interfacial chemistry regulation using functional frameworks for stable metal batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20chemistry%20regulation%20using%20functional%20frameworks%20for%20stable%20metal%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Huang,%20Yaohui&rft.date=2024-02-27&rft.volume=12&rft.issue=9&rft.spage=58&rft.epage=599&rft.pages=58-599&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta07229k&rft_dat=%3Cproquest_cross%3E2931973323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931973323&rft_id=info:pmid/&rfr_iscdi=true |