Interfacial chemistry regulation using functional frameworks for stable metal batteries

Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-02, Vol.12 (9), p.58-599
Hauptverfasser: Huang, Yaohui, Geng, Jiarun, Zhang, Tong, Jiang, Zhuoliang, Fang, Hengyi, Hu, Wei, Li, Fujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 9
container_start_page 58
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Huang, Yaohui
Geng, Jiarun
Zhang, Tong
Jiang, Zhuoliang
Fang, Hengyi
Hu, Wei
Li, Fujun
description Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety concerns and performance decay in RMBs. Constructing functional frameworks on metal anodes has been demonstrated for achieving stable interfacial chemistry. The frameworks can regulate cation desolvation and substrate metallic affinity to provide sufficient ion flux and abundant nucleation sites, thus realizing uniform metal deposition and dendrite suppression. This review focuses on material engineering in functional frameworks to improve reversible interfacial reactions. Furthermore, porous crystalline frameworks (PCFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolites, are considered to tailor the solvation sheath and accelerate cation desolvation. Three-dimensional inorganic frameworks (IOFs), such as metal-based and carbon-based materials, are introduced to enhance ionic diffusion and metal nucleation for enhanced metal plating. Additionally, an outlook on the design strategies and challenges in the development of framework materials is provided for the future development of practical RMBs. Recent advances on functional framework materials, including PCFs and IOFs, are summarized to regulate interfacial chemistry in metal batteries, which facilitate cation desolvation and metal nucleation for improved electrochemical performance.
doi_str_mv 10.1039/d3ta07229k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA07229K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931973323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-5f608a83d667ae5ca3dc9e110f9016c76cbd4a477e347ca804da9a607b576d583</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E12ezm41iq1WLBS8XjMptN6rb7UZMs0n9vaqXOZWaYh5fhQeiakntKmHqoWAAi0lRtz9AoJTlJRKb4-WmW8hJNvN-QWJIQrtQIfSy6YJwFXUOD9adpax_cHjuzHhoIdd_hwdfdGtuh04c1UtZBa757t_XY9g77AGVjcGtCvJUQYlxt_BW6sNB4M_nrY_Q-f1rNXpLl2_NiNl0mOpU0JLnlRIJkFecCTK6BVVoZSolVhHItuC6rDDIhDMuEBkmyChRwIspc8CqXbIxuj7k7138Nxodi0w8uvumLVDGqBGMpi9TdkdKu994ZW-xc3YLbF5QUB3fFI1tNf929RvjmCDuvT9y_W_YDgN1saQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931973323</pqid></control><display><type>article</type><title>Interfacial chemistry regulation using functional frameworks for stable metal batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Yaohui ; Geng, Jiarun ; Zhang, Tong ; Jiang, Zhuoliang ; Fang, Hengyi ; Hu, Wei ; Li, Fujun</creator><creatorcontrib>Huang, Yaohui ; Geng, Jiarun ; Zhang, Tong ; Jiang, Zhuoliang ; Fang, Hengyi ; Hu, Wei ; Li, Fujun</creatorcontrib><description>Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety concerns and performance decay in RMBs. Constructing functional frameworks on metal anodes has been demonstrated for achieving stable interfacial chemistry. The frameworks can regulate cation desolvation and substrate metallic affinity to provide sufficient ion flux and abundant nucleation sites, thus realizing uniform metal deposition and dendrite suppression. This review focuses on material engineering in functional frameworks to improve reversible interfacial reactions. Furthermore, porous crystalline frameworks (PCFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolites, are considered to tailor the solvation sheath and accelerate cation desolvation. Three-dimensional inorganic frameworks (IOFs), such as metal-based and carbon-based materials, are introduced to enhance ionic diffusion and metal nucleation for enhanced metal plating. Additionally, an outlook on the design strategies and challenges in the development of framework materials is provided for the future development of practical RMBs. Recent advances on functional framework materials, including PCFs and IOFs, are summarized to regulate interfacial chemistry in metal batteries, which facilitate cation desolvation and metal nucleation for improved electrochemical performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta07229k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Cations ; Electrolytes ; Energy storage ; Interface reactions ; Ion diffusion ; Ion flux ; Metal-organic frameworks ; Metals ; Nucleation ; Pollutant deposition ; Rechargeable batteries ; Sheaths ; Solvation ; Substrates ; Zeolites</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (9), p.58-599</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-5f608a83d667ae5ca3dc9e110f9016c76cbd4a477e347ca804da9a607b576d583</citedby><cites>FETCH-LOGICAL-c281t-5f608a83d667ae5ca3dc9e110f9016c76cbd4a477e347ca804da9a607b576d583</cites><orcidid>0000-0002-7174-3990 ; 0000-0002-9037-8263 ; 0000-0002-1298-0267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Yaohui</creatorcontrib><creatorcontrib>Geng, Jiarun</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Jiang, Zhuoliang</creatorcontrib><creatorcontrib>Fang, Hengyi</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Li, Fujun</creatorcontrib><title>Interfacial chemistry regulation using functional frameworks for stable metal batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety concerns and performance decay in RMBs. Constructing functional frameworks on metal anodes has been demonstrated for achieving stable interfacial chemistry. The frameworks can regulate cation desolvation and substrate metallic affinity to provide sufficient ion flux and abundant nucleation sites, thus realizing uniform metal deposition and dendrite suppression. This review focuses on material engineering in functional frameworks to improve reversible interfacial reactions. Furthermore, porous crystalline frameworks (PCFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolites, are considered to tailor the solvation sheath and accelerate cation desolvation. Three-dimensional inorganic frameworks (IOFs), such as metal-based and carbon-based materials, are introduced to enhance ionic diffusion and metal nucleation for enhanced metal plating. Additionally, an outlook on the design strategies and challenges in the development of framework materials is provided for the future development of practical RMBs. Recent advances on functional framework materials, including PCFs and IOFs, are summarized to regulate interfacial chemistry in metal batteries, which facilitate cation desolvation and metal nucleation for improved electrochemical performance.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Cations</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Interface reactions</subject><subject>Ion diffusion</subject><subject>Ion flux</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Nucleation</subject><subject>Pollutant deposition</subject><subject>Rechargeable batteries</subject><subject>Sheaths</subject><subject>Solvation</subject><subject>Substrates</subject><subject>Zeolites</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E12ezm41iq1WLBS8XjMptN6rb7UZMs0n9vaqXOZWaYh5fhQeiakntKmHqoWAAi0lRtz9AoJTlJRKb4-WmW8hJNvN-QWJIQrtQIfSy6YJwFXUOD9adpax_cHjuzHhoIdd_hwdfdGtuh04c1UtZBa757t_XY9g77AGVjcGtCvJUQYlxt_BW6sNB4M_nrY_Q-f1rNXpLl2_NiNl0mOpU0JLnlRIJkFecCTK6BVVoZSolVhHItuC6rDDIhDMuEBkmyChRwIspc8CqXbIxuj7k7138Nxodi0w8uvumLVDGqBGMpi9TdkdKu994ZW-xc3YLbF5QUB3fFI1tNf929RvjmCDuvT9y_W_YDgN1saQ</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Huang, Yaohui</creator><creator>Geng, Jiarun</creator><creator>Zhang, Tong</creator><creator>Jiang, Zhuoliang</creator><creator>Fang, Hengyi</creator><creator>Hu, Wei</creator><creator>Li, Fujun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7174-3990</orcidid><orcidid>https://orcid.org/0000-0002-9037-8263</orcidid><orcidid>https://orcid.org/0000-0002-1298-0267</orcidid></search><sort><creationdate>20240227</creationdate><title>Interfacial chemistry regulation using functional frameworks for stable metal batteries</title><author>Huang, Yaohui ; Geng, Jiarun ; Zhang, Tong ; Jiang, Zhuoliang ; Fang, Hengyi ; Hu, Wei ; Li, Fujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-5f608a83d667ae5ca3dc9e110f9016c76cbd4a477e347ca804da9a607b576d583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Cations</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Interface reactions</topic><topic>Ion diffusion</topic><topic>Ion flux</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Nucleation</topic><topic>Pollutant deposition</topic><topic>Rechargeable batteries</topic><topic>Sheaths</topic><topic>Solvation</topic><topic>Substrates</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yaohui</creatorcontrib><creatorcontrib>Geng, Jiarun</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Jiang, Zhuoliang</creatorcontrib><creatorcontrib>Fang, Hengyi</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Li, Fujun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yaohui</au><au>Geng, Jiarun</au><au>Zhang, Tong</au><au>Jiang, Zhuoliang</au><au>Fang, Hengyi</au><au>Hu, Wei</au><au>Li, Fujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial chemistry regulation using functional frameworks for stable metal batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-02-27</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>58</spage><epage>599</epage><pages>58-599</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Rechargeable metal batteries (RMBs) stand out as an attractive energy storage technique owing to their high theoretical energy density. However, their unstable electrode-electrolyte interface, resulting from parasitic reactions between electrolytes and active metal anodes (Li/Na/Zn), leads to safety concerns and performance decay in RMBs. Constructing functional frameworks on metal anodes has been demonstrated for achieving stable interfacial chemistry. The frameworks can regulate cation desolvation and substrate metallic affinity to provide sufficient ion flux and abundant nucleation sites, thus realizing uniform metal deposition and dendrite suppression. This review focuses on material engineering in functional frameworks to improve reversible interfacial reactions. Furthermore, porous crystalline frameworks (PCFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolites, are considered to tailor the solvation sheath and accelerate cation desolvation. Three-dimensional inorganic frameworks (IOFs), such as metal-based and carbon-based materials, are introduced to enhance ionic diffusion and metal nucleation for enhanced metal plating. Additionally, an outlook on the design strategies and challenges in the development of framework materials is provided for the future development of practical RMBs. Recent advances on functional framework materials, including PCFs and IOFs, are summarized to regulate interfacial chemistry in metal batteries, which facilitate cation desolvation and metal nucleation for improved electrochemical performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta07229k</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-7174-3990</orcidid><orcidid>https://orcid.org/0000-0002-9037-8263</orcidid><orcidid>https://orcid.org/0000-0002-1298-0267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (9), p.58-599
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D3TA07229K
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Batteries
Cations
Electrolytes
Energy storage
Interface reactions
Ion diffusion
Ion flux
Metal-organic frameworks
Metals
Nucleation
Pollutant deposition
Rechargeable batteries
Sheaths
Solvation
Substrates
Zeolites
title Interfacial chemistry regulation using functional frameworks for stable metal batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20chemistry%20regulation%20using%20functional%20frameworks%20for%20stable%20metal%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Huang,%20Yaohui&rft.date=2024-02-27&rft.volume=12&rft.issue=9&rft.spage=58&rft.epage=599&rft.pages=58-599&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta07229k&rft_dat=%3Cproquest_cross%3E2931973323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931973323&rft_id=info:pmid/&rfr_iscdi=true