Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction
Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-conte...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-02, Vol.12 (9), p.5156-5169 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5169 |
---|---|
container_issue | 9 |
container_start_page | 5156 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Aegerter, Dino Fabbri, Emiliana Borlaf, Mario Yüzbasi, Nur Sena Diklić, Nataša Clark, Adam H. Romankov, Vladyslav Piamonteze, Cinthia Dreiser, Jan Huthwelker, Thomas Graule, Thomas Schmidt, Thomas J. |
description | Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-content effects on the surface reconstruction of flame-spray synthesized Ba
0.50
Sr
0.50
Co
1−
x
Fe
x
O
3−
δ
(BSCo
1−
x
Fe
x
) is systematically investigated by gradually substituting Co with Fe (0 <
x
< 1). The electrochemical characterization reveals a volcano-shaped trend of the OER activity and stability as a function of the Fe-content, and identifies BSCo
0.80
Fe
0.20
as the best performing electrocatalyst. This Fe-content dependent performance trend directly correlates with the extent of surface reconstruction, as unveiled by combining
ex situ
surface and
operando
bulk X-ray absorption spectroscopy. More specifically, the increasing electrocatalytic performance from
x
= 0.01 to 0.20 is explained by the ability of Fe to stabilize surface Co
2+
-atoms in the pristine material. This enhances the electrochemically triggered irreversible surface Co oxidation, leading to a more extensive formation of a Co- and Fe-based (oxyhydr)oxide layer that reaches deep into the electrochemically metastable bulk. The decreasing performance trend for
x
> 0.20 is related to the increasing oxygen content in the pristine material, leading to a stabilization of the bulk structure and preventing the (oxyhydr)oxide from growing into the bulk. Moreover, a high Fe-content (
x
> 0.40) stabilizes the surface Co
2+
-atoms in such an extent that the irreversible surface Co oxidation is increasingly suppressed, limiting the reconstruction process even on the surface. Overall, this study provides a fundamental understanding of the Fe-content effects on surface reconstruction in BSCo
1−
x
Fe
x
and deciphers the highest electrocatalytic performance of BSCo
0.80
Fe
0.20
as a combination of optimally, neither too weakly nor too strongly, stabilized surface Co
2+
-atoms and bulk structure, leading to the most extensive surface reconstruction. |
doi_str_mv | 10.1039/D3TA06156F |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA06156F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA06156F</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76F-29a39faa6bea7ab96ecf181366cf019c881802d19dd0a21441519334adf7347a3</originalsourceid><addsrcrecordid>eNpFkEFOwzAQRS0EElXphhPMGinFjhPHXpaWAFKlLug-cp1xCSoxst2qPQGsOQvn4BCchLRFMIv_Z_5Ib_EJuWR0yChX1xM-H1HBclGekF5Kc5oUmRKnf7uU52QQwjPtRlIqlOqRtwmuNk27hKaNDkpMjGsjthHQWjQxgGshrL3VBsFj9wzRr01suthZuNFAhzmFR3_0sQP2_f4B247UyQz4_vr6BOs8xCcEt90tsQXcuNX6APGoD7QLcmb1KuDg1_tkXt7Ox_fJdHb3MB5NE1OIMkmV5spqLRaoC71QAo1lknEhjKVMGSmZpGnNVF1TnbIsYzlTnGe6tgXPCs375OqINd6F4NFWr7550X5XMVrtS6z-S-Q_lxRktA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Aegerter, Dino ; Fabbri, Emiliana ; Borlaf, Mario ; Yüzbasi, Nur Sena ; Diklić, Nataša ; Clark, Adam H. ; Romankov, Vladyslav ; Piamonteze, Cinthia ; Dreiser, Jan ; Huthwelker, Thomas ; Graule, Thomas ; Schmidt, Thomas J.</creator><creatorcontrib>Aegerter, Dino ; Fabbri, Emiliana ; Borlaf, Mario ; Yüzbasi, Nur Sena ; Diklić, Nataša ; Clark, Adam H. ; Romankov, Vladyslav ; Piamonteze, Cinthia ; Dreiser, Jan ; Huthwelker, Thomas ; Graule, Thomas ; Schmidt, Thomas J.</creatorcontrib><description>Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-content effects on the surface reconstruction of flame-spray synthesized Ba
0.50
Sr
0.50
Co
1−
x
Fe
x
O
3−
δ
(BSCo
1−
x
Fe
x
) is systematically investigated by gradually substituting Co with Fe (0 <
x
< 1). The electrochemical characterization reveals a volcano-shaped trend of the OER activity and stability as a function of the Fe-content, and identifies BSCo
0.80
Fe
0.20
as the best performing electrocatalyst. This Fe-content dependent performance trend directly correlates with the extent of surface reconstruction, as unveiled by combining
ex situ
surface and
operando
bulk X-ray absorption spectroscopy. More specifically, the increasing electrocatalytic performance from
x
= 0.01 to 0.20 is explained by the ability of Fe to stabilize surface Co
2+
-atoms in the pristine material. This enhances the electrochemically triggered irreversible surface Co oxidation, leading to a more extensive formation of a Co- and Fe-based (oxyhydr)oxide layer that reaches deep into the electrochemically metastable bulk. The decreasing performance trend for
x
> 0.20 is related to the increasing oxygen content in the pristine material, leading to a stabilization of the bulk structure and preventing the (oxyhydr)oxide from growing into the bulk. Moreover, a high Fe-content (
x
> 0.40) stabilizes the surface Co
2+
-atoms in such an extent that the irreversible surface Co oxidation is increasingly suppressed, limiting the reconstruction process even on the surface. Overall, this study provides a fundamental understanding of the Fe-content effects on surface reconstruction in BSCo
1−
x
Fe
x
and deciphers the highest electrocatalytic performance of BSCo
0.80
Fe
0.20
as a combination of optimally, neither too weakly nor too strongly, stabilized surface Co
2+
-atoms and bulk structure, leading to the most extensive surface reconstruction.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA06156F</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (9), p.5156-5169</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76F-29a39faa6bea7ab96ecf181366cf019c881802d19dd0a21441519334adf7347a3</citedby><cites>FETCH-LOGICAL-c76F-29a39faa6bea7ab96ecf181366cf019c881802d19dd0a21441519334adf7347a3</cites><orcidid>0000-0002-4605-451X ; 0000-0002-0965-5818 ; 0000-0002-5478-9639 ; 0000-0002-8627-6926 ; 0000-0002-1636-367X ; 0000-0003-4174-8958 ; 0000-0001-7480-1271 ; 0000-0002-7304-4552 ; 0000-0002-8416-9668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Aegerter, Dino</creatorcontrib><creatorcontrib>Fabbri, Emiliana</creatorcontrib><creatorcontrib>Borlaf, Mario</creatorcontrib><creatorcontrib>Yüzbasi, Nur Sena</creatorcontrib><creatorcontrib>Diklić, Nataša</creatorcontrib><creatorcontrib>Clark, Adam H.</creatorcontrib><creatorcontrib>Romankov, Vladyslav</creatorcontrib><creatorcontrib>Piamonteze, Cinthia</creatorcontrib><creatorcontrib>Dreiser, Jan</creatorcontrib><creatorcontrib>Huthwelker, Thomas</creatorcontrib><creatorcontrib>Graule, Thomas</creatorcontrib><creatorcontrib>Schmidt, Thomas J.</creatorcontrib><title>Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-content effects on the surface reconstruction of flame-spray synthesized Ba
0.50
Sr
0.50
Co
1−
x
Fe
x
O
3−
δ
(BSCo
1−
x
Fe
x
) is systematically investigated by gradually substituting Co with Fe (0 <
x
< 1). The electrochemical characterization reveals a volcano-shaped trend of the OER activity and stability as a function of the Fe-content, and identifies BSCo
0.80
Fe
0.20
as the best performing electrocatalyst. This Fe-content dependent performance trend directly correlates with the extent of surface reconstruction, as unveiled by combining
ex situ
surface and
operando
bulk X-ray absorption spectroscopy. More specifically, the increasing electrocatalytic performance from
x
= 0.01 to 0.20 is explained by the ability of Fe to stabilize surface Co
2+
-atoms in the pristine material. This enhances the electrochemically triggered irreversible surface Co oxidation, leading to a more extensive formation of a Co- and Fe-based (oxyhydr)oxide layer that reaches deep into the electrochemically metastable bulk. The decreasing performance trend for
x
> 0.20 is related to the increasing oxygen content in the pristine material, leading to a stabilization of the bulk structure and preventing the (oxyhydr)oxide from growing into the bulk. Moreover, a high Fe-content (
x
> 0.40) stabilizes the surface Co
2+
-atoms in such an extent that the irreversible surface Co oxidation is increasingly suppressed, limiting the reconstruction process even on the surface. Overall, this study provides a fundamental understanding of the Fe-content effects on surface reconstruction in BSCo
1−
x
Fe
x
and deciphers the highest electrocatalytic performance of BSCo
0.80
Fe
0.20
as a combination of optimally, neither too weakly nor too strongly, stabilized surface Co
2+
-atoms and bulk structure, leading to the most extensive surface reconstruction.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEFOwzAQRS0EElXphhPMGinFjhPHXpaWAFKlLug-cp1xCSoxst2qPQGsOQvn4BCchLRFMIv_Z_5Ib_EJuWR0yChX1xM-H1HBclGekF5Kc5oUmRKnf7uU52QQwjPtRlIqlOqRtwmuNk27hKaNDkpMjGsjthHQWjQxgGshrL3VBsFj9wzRr01suthZuNFAhzmFR3_0sQP2_f4B247UyQz4_vr6BOs8xCcEt90tsQXcuNX6APGoD7QLcmb1KuDg1_tkXt7Ox_fJdHb3MB5NE1OIMkmV5spqLRaoC71QAo1lknEhjKVMGSmZpGnNVF1TnbIsYzlTnGe6tgXPCs375OqINd6F4NFWr7550X5XMVrtS6z-S-Q_lxRktA</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Aegerter, Dino</creator><creator>Fabbri, Emiliana</creator><creator>Borlaf, Mario</creator><creator>Yüzbasi, Nur Sena</creator><creator>Diklić, Nataša</creator><creator>Clark, Adam H.</creator><creator>Romankov, Vladyslav</creator><creator>Piamonteze, Cinthia</creator><creator>Dreiser, Jan</creator><creator>Huthwelker, Thomas</creator><creator>Graule, Thomas</creator><creator>Schmidt, Thomas J.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4605-451X</orcidid><orcidid>https://orcid.org/0000-0002-0965-5818</orcidid><orcidid>https://orcid.org/0000-0002-5478-9639</orcidid><orcidid>https://orcid.org/0000-0002-8627-6926</orcidid><orcidid>https://orcid.org/0000-0002-1636-367X</orcidid><orcidid>https://orcid.org/0000-0003-4174-8958</orcidid><orcidid>https://orcid.org/0000-0001-7480-1271</orcidid><orcidid>https://orcid.org/0000-0002-7304-4552</orcidid><orcidid>https://orcid.org/0000-0002-8416-9668</orcidid></search><sort><creationdate>20240227</creationdate><title>Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction</title><author>Aegerter, Dino ; Fabbri, Emiliana ; Borlaf, Mario ; Yüzbasi, Nur Sena ; Diklić, Nataša ; Clark, Adam H. ; Romankov, Vladyslav ; Piamonteze, Cinthia ; Dreiser, Jan ; Huthwelker, Thomas ; Graule, Thomas ; Schmidt, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76F-29a39faa6bea7ab96ecf181366cf019c881802d19dd0a21441519334adf7347a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aegerter, Dino</creatorcontrib><creatorcontrib>Fabbri, Emiliana</creatorcontrib><creatorcontrib>Borlaf, Mario</creatorcontrib><creatorcontrib>Yüzbasi, Nur Sena</creatorcontrib><creatorcontrib>Diklić, Nataša</creatorcontrib><creatorcontrib>Clark, Adam H.</creatorcontrib><creatorcontrib>Romankov, Vladyslav</creatorcontrib><creatorcontrib>Piamonteze, Cinthia</creatorcontrib><creatorcontrib>Dreiser, Jan</creatorcontrib><creatorcontrib>Huthwelker, Thomas</creatorcontrib><creatorcontrib>Graule, Thomas</creatorcontrib><creatorcontrib>Schmidt, Thomas J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aegerter, Dino</au><au>Fabbri, Emiliana</au><au>Borlaf, Mario</au><au>Yüzbasi, Nur Sena</au><au>Diklić, Nataša</au><au>Clark, Adam H.</au><au>Romankov, Vladyslav</au><au>Piamonteze, Cinthia</au><au>Dreiser, Jan</au><au>Huthwelker, Thomas</au><au>Graule, Thomas</au><au>Schmidt, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-02-27</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>5156</spage><epage>5169</epage><pages>5156-5169</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-content effects on the surface reconstruction of flame-spray synthesized Ba
0.50
Sr
0.50
Co
1−
x
Fe
x
O
3−
δ
(BSCo
1−
x
Fe
x
) is systematically investigated by gradually substituting Co with Fe (0 <
x
< 1). The electrochemical characterization reveals a volcano-shaped trend of the OER activity and stability as a function of the Fe-content, and identifies BSCo
0.80
Fe
0.20
as the best performing electrocatalyst. This Fe-content dependent performance trend directly correlates with the extent of surface reconstruction, as unveiled by combining
ex situ
surface and
operando
bulk X-ray absorption spectroscopy. More specifically, the increasing electrocatalytic performance from
x
= 0.01 to 0.20 is explained by the ability of Fe to stabilize surface Co
2+
-atoms in the pristine material. This enhances the electrochemically triggered irreversible surface Co oxidation, leading to a more extensive formation of a Co- and Fe-based (oxyhydr)oxide layer that reaches deep into the electrochemically metastable bulk. The decreasing performance trend for
x
> 0.20 is related to the increasing oxygen content in the pristine material, leading to a stabilization of the bulk structure and preventing the (oxyhydr)oxide from growing into the bulk. Moreover, a high Fe-content (
x
> 0.40) stabilizes the surface Co
2+
-atoms in such an extent that the irreversible surface Co oxidation is increasingly suppressed, limiting the reconstruction process even on the surface. Overall, this study provides a fundamental understanding of the Fe-content effects on surface reconstruction in BSCo
1−
x
Fe
x
and deciphers the highest electrocatalytic performance of BSCo
0.80
Fe
0.20
as a combination of optimally, neither too weakly nor too strongly, stabilized surface Co
2+
-atoms and bulk structure, leading to the most extensive surface reconstruction.</abstract><doi>10.1039/D3TA06156F</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4605-451X</orcidid><orcidid>https://orcid.org/0000-0002-0965-5818</orcidid><orcidid>https://orcid.org/0000-0002-5478-9639</orcidid><orcidid>https://orcid.org/0000-0002-8627-6926</orcidid><orcidid>https://orcid.org/0000-0002-1636-367X</orcidid><orcidid>https://orcid.org/0000-0003-4174-8958</orcidid><orcidid>https://orcid.org/0000-0001-7480-1271</orcidid><orcidid>https://orcid.org/0000-0002-7304-4552</orcidid><orcidid>https://orcid.org/0000-0002-8416-9668</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (9), p.5156-5169 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3TA06156F |
source | Royal Society Of Chemistry Journals 2008- |
title | Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delving%20into%20Fe-content%20effects%20on%20surface%20reconstruction%20of%20Ba%200.50%20Sr%200.50%20Co%201%E2%88%92%20x%20Fe%20x%20O%203%E2%88%92%20%CE%B4%20for%20the%20oxygen%20evolution%20reaction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Aegerter,%20Dino&rft.date=2024-02-27&rft.volume=12&rft.issue=9&rft.spage=5156&rft.epage=5169&rft.pages=5156-5169&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA06156F&rft_dat=%3Ccrossref%3E10_1039_D3TA06156F%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |