Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction

Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-conte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-02, Vol.12 (9), p.5156-5169
Hauptverfasser: Aegerter, Dino, Fabbri, Emiliana, Borlaf, Mario, Yüzbasi, Nur Sena, Diklić, Nataša, Clark, Adam H., Romankov, Vladyslav, Piamonteze, Cinthia, Dreiser, Jan, Huthwelker, Thomas, Graule, Thomas, Schmidt, Thomas J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5169
container_issue 9
container_start_page 5156
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Aegerter, Dino
Fabbri, Emiliana
Borlaf, Mario
Yüzbasi, Nur Sena
Diklić, Nataša
Clark, Adam H.
Romankov, Vladyslav
Piamonteze, Cinthia
Dreiser, Jan
Huthwelker, Thomas
Graule, Thomas
Schmidt, Thomas J.
description Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-content effects on the surface reconstruction of flame-spray synthesized Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ (BSCo 1− x Fe x ) is systematically investigated by gradually substituting Co with Fe (0 < x < 1). The electrochemical characterization reveals a volcano-shaped trend of the OER activity and stability as a function of the Fe-content, and identifies BSCo 0.80 Fe 0.20 as the best performing electrocatalyst. This Fe-content dependent performance trend directly correlates with the extent of surface reconstruction, as unveiled by combining ex situ surface and operando bulk X-ray absorption spectroscopy. More specifically, the increasing electrocatalytic performance from x = 0.01 to 0.20 is explained by the ability of Fe to stabilize surface Co 2+ -atoms in the pristine material. This enhances the electrochemically triggered irreversible surface Co oxidation, leading to a more extensive formation of a Co- and Fe-based (oxyhydr)oxide layer that reaches deep into the electrochemically metastable bulk. The decreasing performance trend for x > 0.20 is related to the increasing oxygen content in the pristine material, leading to a stabilization of the bulk structure and preventing the (oxyhydr)oxide from growing into the bulk. Moreover, a high Fe-content ( x > 0.40) stabilizes the surface Co 2+ -atoms in such an extent that the irreversible surface Co oxidation is increasingly suppressed, limiting the reconstruction process even on the surface. Overall, this study provides a fundamental understanding of the Fe-content effects on surface reconstruction in BSCo 1− x Fe x and deciphers the highest electrocatalytic performance of BSCo 0.80 Fe 0.20 as a combination of optimally, neither too weakly nor too strongly, stabilized surface Co 2+ -atoms and bulk structure, leading to the most extensive surface reconstruction.
doi_str_mv 10.1039/D3TA06156F
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA06156F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA06156F</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76F-29a39faa6bea7ab96ecf181366cf019c881802d19dd0a21441519334adf7347a3</originalsourceid><addsrcrecordid>eNpFkEFOwzAQRS0EElXphhPMGinFjhPHXpaWAFKlLug-cp1xCSoxst2qPQGsOQvn4BCchLRFMIv_Z_5Ib_EJuWR0yChX1xM-H1HBclGekF5Kc5oUmRKnf7uU52QQwjPtRlIqlOqRtwmuNk27hKaNDkpMjGsjthHQWjQxgGshrL3VBsFj9wzRr01suthZuNFAhzmFR3_0sQP2_f4B247UyQz4_vr6BOs8xCcEt90tsQXcuNX6APGoD7QLcmb1KuDg1_tkXt7Ox_fJdHb3MB5NE1OIMkmV5spqLRaoC71QAo1lknEhjKVMGSmZpGnNVF1TnbIsYzlTnGe6tgXPCs375OqINd6F4NFWr7550X5XMVrtS6z-S-Q_lxRktA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Aegerter, Dino ; Fabbri, Emiliana ; Borlaf, Mario ; Yüzbasi, Nur Sena ; Diklić, Nataša ; Clark, Adam H. ; Romankov, Vladyslav ; Piamonteze, Cinthia ; Dreiser, Jan ; Huthwelker, Thomas ; Graule, Thomas ; Schmidt, Thomas J.</creator><creatorcontrib>Aegerter, Dino ; Fabbri, Emiliana ; Borlaf, Mario ; Yüzbasi, Nur Sena ; Diklić, Nataša ; Clark, Adam H. ; Romankov, Vladyslav ; Piamonteze, Cinthia ; Dreiser, Jan ; Huthwelker, Thomas ; Graule, Thomas ; Schmidt, Thomas J.</creatorcontrib><description>Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-content effects on the surface reconstruction of flame-spray synthesized Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ (BSCo 1− x Fe x ) is systematically investigated by gradually substituting Co with Fe (0 &lt; x &lt; 1). The electrochemical characterization reveals a volcano-shaped trend of the OER activity and stability as a function of the Fe-content, and identifies BSCo 0.80 Fe 0.20 as the best performing electrocatalyst. This Fe-content dependent performance trend directly correlates with the extent of surface reconstruction, as unveiled by combining ex situ surface and operando bulk X-ray absorption spectroscopy. More specifically, the increasing electrocatalytic performance from x = 0.01 to 0.20 is explained by the ability of Fe to stabilize surface Co 2+ -atoms in the pristine material. This enhances the electrochemically triggered irreversible surface Co oxidation, leading to a more extensive formation of a Co- and Fe-based (oxyhydr)oxide layer that reaches deep into the electrochemically metastable bulk. The decreasing performance trend for x &gt; 0.20 is related to the increasing oxygen content in the pristine material, leading to a stabilization of the bulk structure and preventing the (oxyhydr)oxide from growing into the bulk. Moreover, a high Fe-content ( x &gt; 0.40) stabilizes the surface Co 2+ -atoms in such an extent that the irreversible surface Co oxidation is increasingly suppressed, limiting the reconstruction process even on the surface. Overall, this study provides a fundamental understanding of the Fe-content effects on surface reconstruction in BSCo 1− x Fe x and deciphers the highest electrocatalytic performance of BSCo 0.80 Fe 0.20 as a combination of optimally, neither too weakly nor too strongly, stabilized surface Co 2+ -atoms and bulk structure, leading to the most extensive surface reconstruction.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA06156F</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (9), p.5156-5169</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76F-29a39faa6bea7ab96ecf181366cf019c881802d19dd0a21441519334adf7347a3</citedby><cites>FETCH-LOGICAL-c76F-29a39faa6bea7ab96ecf181366cf019c881802d19dd0a21441519334adf7347a3</cites><orcidid>0000-0002-4605-451X ; 0000-0002-0965-5818 ; 0000-0002-5478-9639 ; 0000-0002-8627-6926 ; 0000-0002-1636-367X ; 0000-0003-4174-8958 ; 0000-0001-7480-1271 ; 0000-0002-7304-4552 ; 0000-0002-8416-9668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Aegerter, Dino</creatorcontrib><creatorcontrib>Fabbri, Emiliana</creatorcontrib><creatorcontrib>Borlaf, Mario</creatorcontrib><creatorcontrib>Yüzbasi, Nur Sena</creatorcontrib><creatorcontrib>Diklić, Nataša</creatorcontrib><creatorcontrib>Clark, Adam H.</creatorcontrib><creatorcontrib>Romankov, Vladyslav</creatorcontrib><creatorcontrib>Piamonteze, Cinthia</creatorcontrib><creatorcontrib>Dreiser, Jan</creatorcontrib><creatorcontrib>Huthwelker, Thomas</creatorcontrib><creatorcontrib>Graule, Thomas</creatorcontrib><creatorcontrib>Schmidt, Thomas J.</creatorcontrib><title>Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-content effects on the surface reconstruction of flame-spray synthesized Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ (BSCo 1− x Fe x ) is systematically investigated by gradually substituting Co with Fe (0 &lt; x &lt; 1). The electrochemical characterization reveals a volcano-shaped trend of the OER activity and stability as a function of the Fe-content, and identifies BSCo 0.80 Fe 0.20 as the best performing electrocatalyst. This Fe-content dependent performance trend directly correlates with the extent of surface reconstruction, as unveiled by combining ex situ surface and operando bulk X-ray absorption spectroscopy. More specifically, the increasing electrocatalytic performance from x = 0.01 to 0.20 is explained by the ability of Fe to stabilize surface Co 2+ -atoms in the pristine material. This enhances the electrochemically triggered irreversible surface Co oxidation, leading to a more extensive formation of a Co- and Fe-based (oxyhydr)oxide layer that reaches deep into the electrochemically metastable bulk. The decreasing performance trend for x &gt; 0.20 is related to the increasing oxygen content in the pristine material, leading to a stabilization of the bulk structure and preventing the (oxyhydr)oxide from growing into the bulk. Moreover, a high Fe-content ( x &gt; 0.40) stabilizes the surface Co 2+ -atoms in such an extent that the irreversible surface Co oxidation is increasingly suppressed, limiting the reconstruction process even on the surface. Overall, this study provides a fundamental understanding of the Fe-content effects on surface reconstruction in BSCo 1− x Fe x and deciphers the highest electrocatalytic performance of BSCo 0.80 Fe 0.20 as a combination of optimally, neither too weakly nor too strongly, stabilized surface Co 2+ -atoms and bulk structure, leading to the most extensive surface reconstruction.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEFOwzAQRS0EElXphhPMGinFjhPHXpaWAFKlLug-cp1xCSoxst2qPQGsOQvn4BCchLRFMIv_Z_5Ib_EJuWR0yChX1xM-H1HBclGekF5Kc5oUmRKnf7uU52QQwjPtRlIqlOqRtwmuNk27hKaNDkpMjGsjthHQWjQxgGshrL3VBsFj9wzRr01suthZuNFAhzmFR3_0sQP2_f4B247UyQz4_vr6BOs8xCcEt90tsQXcuNX6APGoD7QLcmb1KuDg1_tkXt7Ox_fJdHb3MB5NE1OIMkmV5spqLRaoC71QAo1lknEhjKVMGSmZpGnNVF1TnbIsYzlTnGe6tgXPCs375OqINd6F4NFWr7550X5XMVrtS6z-S-Q_lxRktA</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Aegerter, Dino</creator><creator>Fabbri, Emiliana</creator><creator>Borlaf, Mario</creator><creator>Yüzbasi, Nur Sena</creator><creator>Diklić, Nataša</creator><creator>Clark, Adam H.</creator><creator>Romankov, Vladyslav</creator><creator>Piamonteze, Cinthia</creator><creator>Dreiser, Jan</creator><creator>Huthwelker, Thomas</creator><creator>Graule, Thomas</creator><creator>Schmidt, Thomas J.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4605-451X</orcidid><orcidid>https://orcid.org/0000-0002-0965-5818</orcidid><orcidid>https://orcid.org/0000-0002-5478-9639</orcidid><orcidid>https://orcid.org/0000-0002-8627-6926</orcidid><orcidid>https://orcid.org/0000-0002-1636-367X</orcidid><orcidid>https://orcid.org/0000-0003-4174-8958</orcidid><orcidid>https://orcid.org/0000-0001-7480-1271</orcidid><orcidid>https://orcid.org/0000-0002-7304-4552</orcidid><orcidid>https://orcid.org/0000-0002-8416-9668</orcidid></search><sort><creationdate>20240227</creationdate><title>Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction</title><author>Aegerter, Dino ; Fabbri, Emiliana ; Borlaf, Mario ; Yüzbasi, Nur Sena ; Diklić, Nataša ; Clark, Adam H. ; Romankov, Vladyslav ; Piamonteze, Cinthia ; Dreiser, Jan ; Huthwelker, Thomas ; Graule, Thomas ; Schmidt, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76F-29a39faa6bea7ab96ecf181366cf019c881802d19dd0a21441519334adf7347a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aegerter, Dino</creatorcontrib><creatorcontrib>Fabbri, Emiliana</creatorcontrib><creatorcontrib>Borlaf, Mario</creatorcontrib><creatorcontrib>Yüzbasi, Nur Sena</creatorcontrib><creatorcontrib>Diklić, Nataša</creatorcontrib><creatorcontrib>Clark, Adam H.</creatorcontrib><creatorcontrib>Romankov, Vladyslav</creatorcontrib><creatorcontrib>Piamonteze, Cinthia</creatorcontrib><creatorcontrib>Dreiser, Jan</creatorcontrib><creatorcontrib>Huthwelker, Thomas</creatorcontrib><creatorcontrib>Graule, Thomas</creatorcontrib><creatorcontrib>Schmidt, Thomas J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aegerter, Dino</au><au>Fabbri, Emiliana</au><au>Borlaf, Mario</au><au>Yüzbasi, Nur Sena</au><au>Diklić, Nataša</au><au>Clark, Adam H.</au><au>Romankov, Vladyslav</au><au>Piamonteze, Cinthia</au><au>Dreiser, Jan</au><au>Huthwelker, Thomas</au><au>Graule, Thomas</au><au>Schmidt, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-02-27</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>5156</spage><epage>5169</epage><pages>5156-5169</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Surface reconstruction of cobalt-based oxides is recognized as a key to efficiently electrocatalyze the oxygen evolution reaction (OER) in alkaline environment. Identifying material features that promote surface reconstruction is crucial to rationally improve OER electrocatalysts. Here, the Fe-content effects on the surface reconstruction of flame-spray synthesized Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ (BSCo 1− x Fe x ) is systematically investigated by gradually substituting Co with Fe (0 &lt; x &lt; 1). The electrochemical characterization reveals a volcano-shaped trend of the OER activity and stability as a function of the Fe-content, and identifies BSCo 0.80 Fe 0.20 as the best performing electrocatalyst. This Fe-content dependent performance trend directly correlates with the extent of surface reconstruction, as unveiled by combining ex situ surface and operando bulk X-ray absorption spectroscopy. More specifically, the increasing electrocatalytic performance from x = 0.01 to 0.20 is explained by the ability of Fe to stabilize surface Co 2+ -atoms in the pristine material. This enhances the electrochemically triggered irreversible surface Co oxidation, leading to a more extensive formation of a Co- and Fe-based (oxyhydr)oxide layer that reaches deep into the electrochemically metastable bulk. The decreasing performance trend for x &gt; 0.20 is related to the increasing oxygen content in the pristine material, leading to a stabilization of the bulk structure and preventing the (oxyhydr)oxide from growing into the bulk. Moreover, a high Fe-content ( x &gt; 0.40) stabilizes the surface Co 2+ -atoms in such an extent that the irreversible surface Co oxidation is increasingly suppressed, limiting the reconstruction process even on the surface. Overall, this study provides a fundamental understanding of the Fe-content effects on surface reconstruction in BSCo 1− x Fe x and deciphers the highest electrocatalytic performance of BSCo 0.80 Fe 0.20 as a combination of optimally, neither too weakly nor too strongly, stabilized surface Co 2+ -atoms and bulk structure, leading to the most extensive surface reconstruction.</abstract><doi>10.1039/D3TA06156F</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4605-451X</orcidid><orcidid>https://orcid.org/0000-0002-0965-5818</orcidid><orcidid>https://orcid.org/0000-0002-5478-9639</orcidid><orcidid>https://orcid.org/0000-0002-8627-6926</orcidid><orcidid>https://orcid.org/0000-0002-1636-367X</orcidid><orcidid>https://orcid.org/0000-0003-4174-8958</orcidid><orcidid>https://orcid.org/0000-0001-7480-1271</orcidid><orcidid>https://orcid.org/0000-0002-7304-4552</orcidid><orcidid>https://orcid.org/0000-0002-8416-9668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (9), p.5156-5169
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D3TA06156F
source Royal Society Of Chemistry Journals 2008-
title Delving into Fe-content effects on surface reconstruction of Ba 0.50 Sr 0.50 Co 1− x Fe x O 3− δ for the oxygen evolution reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delving%20into%20Fe-content%20effects%20on%20surface%20reconstruction%20of%20Ba%200.50%20Sr%200.50%20Co%201%E2%88%92%20x%20Fe%20x%20O%203%E2%88%92%20%CE%B4%20for%20the%20oxygen%20evolution%20reaction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Aegerter,%20Dino&rft.date=2024-02-27&rft.volume=12&rft.issue=9&rft.spage=5156&rft.epage=5169&rft.pages=5156-5169&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA06156F&rft_dat=%3Ccrossref%3E10_1039_D3TA06156F%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true