Ruthenium single atoms implanted on NiS 2 -FeS 2 nanosheet heterostructures for efficacious water electrolysis

The catalytic potential of single atom incorporated heterostructures holds substantial promise because of their ability to offer customizable chemical functionality and abundant active sites. In this study, a novel approach is employed to synthesize ruthenium single atoms (Ru SA ) implanted on bimet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-02, Vol.12 (6), p.3489-3500
Hauptverfasser: Ghising, Ram Babu, Pan, Uday Narayan, Kandel, Mani Ram, Dhakal, Purna Prasad, Sidra, Saleem, Kim, Do Hwan, Kim, Nam Hoon, Lee, Joong Hee
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3500
container_issue 6
container_start_page 3489
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Ghising, Ram Babu
Pan, Uday Narayan
Kandel, Mani Ram
Dhakal, Purna Prasad
Sidra, Saleem
Kim, Do Hwan
Kim, Nam Hoon
Lee, Joong Hee
description The catalytic potential of single atom incorporated heterostructures holds substantial promise because of their ability to offer customizable chemical functionality and abundant active sites. In this study, a novel approach is employed to synthesize ruthenium single atoms (Ru SA ) implanted on bimetallic NiFe-LDH derived sulfide nanosheet heterostructures (Ru SA -NiS 2 -FeS 2 ) via a facile technique. Experimental findings demonstrate that Ru SA -NiS 2 -FeS 2 exhibits lower overpotential ( η ) for water splitting. Specifically, the hydrogen evolution reaction (HER) overpotentials at current densities of (10 and 100) mA cm −2 are measured to be (57 and 187) mV, respectively. Similarly, at (20 and 100) mA cm −2 , the oxygen evolution reaction (OER) overpotentials are recorded to be (242 and 304) mV, respectively. Conspicuously, the Ru SA -NiS 2 -FeS 2 (+, −) electrolyzer requires cell potentials of (1.47 and 1.74) V at (10 and 100) mA cm −2 , lower than the cell potentials of (1.57 and 1.92) V required by the RuO 2 @NF (+)//Pt–C@NF (−) device to achieve similar current densities. These experimental results and the Density Functional Theory (DFT) calculations unveil that our research offers a promising method for single atom implanted heterostructures that can be used for large-scale clean hydrogen production through water electrolysis.
doi_str_mv 10.1039/D3TA05630A
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA05630A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA05630A</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76A-6ea17e72730b3ed21448dc2be7b6acbc44cc5d3f6c089f78a68706f8ca31f1a53</originalsourceid><addsrcrecordid>eNpFkMFKxDAYhIMouKx78QlyFqpJ0ybpsayuCouC9l7S9I-NtMmSpMi-vV0Uncs3h2EYBqFrSm4pYdXdPWtqUnJG6jO0yklJMlFU_PzPS3mJNjF-kkWSEF5VK-Te5jSAs_OEo3UfI2CV_BSxnQ6jcgl67B1-se84x9kOTnDK-TgAJDxAguBjCrNOc4CIjQ8YjLFaaevniL_UEsAwgk7Bj8do4xW6MGqMsPnlGjW7h2b7lO1fH5-39T7TgtcZB0UFiFww0jHoc1oUstd5B6LjSne6KLQue2a4JrIyQiouBeFGasWooapka3TzU6uXfTGAaQ_BTiocW0ra01ft_1fsGxonXcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ruthenium single atoms implanted on NiS 2 -FeS 2 nanosheet heterostructures for efficacious water electrolysis</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ghising, Ram Babu ; Pan, Uday Narayan ; Kandel, Mani Ram ; Dhakal, Purna Prasad ; Sidra, Saleem ; Kim, Do Hwan ; Kim, Nam Hoon ; Lee, Joong Hee</creator><creatorcontrib>Ghising, Ram Babu ; Pan, Uday Narayan ; Kandel, Mani Ram ; Dhakal, Purna Prasad ; Sidra, Saleem ; Kim, Do Hwan ; Kim, Nam Hoon ; Lee, Joong Hee</creatorcontrib><description>The catalytic potential of single atom incorporated heterostructures holds substantial promise because of their ability to offer customizable chemical functionality and abundant active sites. In this study, a novel approach is employed to synthesize ruthenium single atoms (Ru SA ) implanted on bimetallic NiFe-LDH derived sulfide nanosheet heterostructures (Ru SA -NiS 2 -FeS 2 ) via a facile technique. Experimental findings demonstrate that Ru SA -NiS 2 -FeS 2 exhibits lower overpotential ( η ) for water splitting. Specifically, the hydrogen evolution reaction (HER) overpotentials at current densities of (10 and 100) mA cm −2 are measured to be (57 and 187) mV, respectively. Similarly, at (20 and 100) mA cm −2 , the oxygen evolution reaction (OER) overpotentials are recorded to be (242 and 304) mV, respectively. Conspicuously, the Ru SA -NiS 2 -FeS 2 (+, −) electrolyzer requires cell potentials of (1.47 and 1.74) V at (10 and 100) mA cm −2 , lower than the cell potentials of (1.57 and 1.92) V required by the RuO 2 @NF (+)//Pt–C@NF (−) device to achieve similar current densities. These experimental results and the Density Functional Theory (DFT) calculations unveil that our research offers a promising method for single atom implanted heterostructures that can be used for large-scale clean hydrogen production through water electrolysis.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA05630A</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (6), p.3489-3500</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76A-6ea17e72730b3ed21448dc2be7b6acbc44cc5d3f6c089f78a68706f8ca31f1a53</citedby><cites>FETCH-LOGICAL-c76A-6ea17e72730b3ed21448dc2be7b6acbc44cc5d3f6c089f78a68706f8ca31f1a53</cites><orcidid>0000-0002-8545-7223 ; 0000-0001-9281-0489 ; 0000-0001-5122-9567 ; 0000-0002-2976-6873 ; 0000-0002-6672-5149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ghising, Ram Babu</creatorcontrib><creatorcontrib>Pan, Uday Narayan</creatorcontrib><creatorcontrib>Kandel, Mani Ram</creatorcontrib><creatorcontrib>Dhakal, Purna Prasad</creatorcontrib><creatorcontrib>Sidra, Saleem</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Kim, Nam Hoon</creatorcontrib><creatorcontrib>Lee, Joong Hee</creatorcontrib><title>Ruthenium single atoms implanted on NiS 2 -FeS 2 nanosheet heterostructures for efficacious water electrolysis</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The catalytic potential of single atom incorporated heterostructures holds substantial promise because of their ability to offer customizable chemical functionality and abundant active sites. In this study, a novel approach is employed to synthesize ruthenium single atoms (Ru SA ) implanted on bimetallic NiFe-LDH derived sulfide nanosheet heterostructures (Ru SA -NiS 2 -FeS 2 ) via a facile technique. Experimental findings demonstrate that Ru SA -NiS 2 -FeS 2 exhibits lower overpotential ( η ) for water splitting. Specifically, the hydrogen evolution reaction (HER) overpotentials at current densities of (10 and 100) mA cm −2 are measured to be (57 and 187) mV, respectively. Similarly, at (20 and 100) mA cm −2 , the oxygen evolution reaction (OER) overpotentials are recorded to be (242 and 304) mV, respectively. Conspicuously, the Ru SA -NiS 2 -FeS 2 (+, −) electrolyzer requires cell potentials of (1.47 and 1.74) V at (10 and 100) mA cm −2 , lower than the cell potentials of (1.57 and 1.92) V required by the RuO 2 @NF (+)//Pt–C@NF (−) device to achieve similar current densities. These experimental results and the Density Functional Theory (DFT) calculations unveil that our research offers a promising method for single atom implanted heterostructures that can be used for large-scale clean hydrogen production through water electrolysis.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKxDAYhIMouKx78QlyFqpJ0ybpsayuCouC9l7S9I-NtMmSpMi-vV0Uncs3h2EYBqFrSm4pYdXdPWtqUnJG6jO0yklJMlFU_PzPS3mJNjF-kkWSEF5VK-Te5jSAs_OEo3UfI2CV_BSxnQ6jcgl67B1-se84x9kOTnDK-TgAJDxAguBjCrNOc4CIjQ8YjLFaaevniL_UEsAwgk7Bj8do4xW6MGqMsPnlGjW7h2b7lO1fH5-39T7TgtcZB0UFiFww0jHoc1oUstd5B6LjSne6KLQue2a4JrIyQiouBeFGasWooapka3TzU6uXfTGAaQ_BTiocW0ra01ft_1fsGxonXcw</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Ghising, Ram Babu</creator><creator>Pan, Uday Narayan</creator><creator>Kandel, Mani Ram</creator><creator>Dhakal, Purna Prasad</creator><creator>Sidra, Saleem</creator><creator>Kim, Do Hwan</creator><creator>Kim, Nam Hoon</creator><creator>Lee, Joong Hee</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8545-7223</orcidid><orcidid>https://orcid.org/0000-0001-9281-0489</orcidid><orcidid>https://orcid.org/0000-0001-5122-9567</orcidid><orcidid>https://orcid.org/0000-0002-2976-6873</orcidid><orcidid>https://orcid.org/0000-0002-6672-5149</orcidid></search><sort><creationdate>20240206</creationdate><title>Ruthenium single atoms implanted on NiS 2 -FeS 2 nanosheet heterostructures for efficacious water electrolysis</title><author>Ghising, Ram Babu ; Pan, Uday Narayan ; Kandel, Mani Ram ; Dhakal, Purna Prasad ; Sidra, Saleem ; Kim, Do Hwan ; Kim, Nam Hoon ; Lee, Joong Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76A-6ea17e72730b3ed21448dc2be7b6acbc44cc5d3f6c089f78a68706f8ca31f1a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghising, Ram Babu</creatorcontrib><creatorcontrib>Pan, Uday Narayan</creatorcontrib><creatorcontrib>Kandel, Mani Ram</creatorcontrib><creatorcontrib>Dhakal, Purna Prasad</creatorcontrib><creatorcontrib>Sidra, Saleem</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Kim, Nam Hoon</creatorcontrib><creatorcontrib>Lee, Joong Hee</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghising, Ram Babu</au><au>Pan, Uday Narayan</au><au>Kandel, Mani Ram</au><au>Dhakal, Purna Prasad</au><au>Sidra, Saleem</au><au>Kim, Do Hwan</au><au>Kim, Nam Hoon</au><au>Lee, Joong Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ruthenium single atoms implanted on NiS 2 -FeS 2 nanosheet heterostructures for efficacious water electrolysis</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-02-06</date><risdate>2024</risdate><volume>12</volume><issue>6</issue><spage>3489</spage><epage>3500</epage><pages>3489-3500</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The catalytic potential of single atom incorporated heterostructures holds substantial promise because of their ability to offer customizable chemical functionality and abundant active sites. In this study, a novel approach is employed to synthesize ruthenium single atoms (Ru SA ) implanted on bimetallic NiFe-LDH derived sulfide nanosheet heterostructures (Ru SA -NiS 2 -FeS 2 ) via a facile technique. Experimental findings demonstrate that Ru SA -NiS 2 -FeS 2 exhibits lower overpotential ( η ) for water splitting. Specifically, the hydrogen evolution reaction (HER) overpotentials at current densities of (10 and 100) mA cm −2 are measured to be (57 and 187) mV, respectively. Similarly, at (20 and 100) mA cm −2 , the oxygen evolution reaction (OER) overpotentials are recorded to be (242 and 304) mV, respectively. Conspicuously, the Ru SA -NiS 2 -FeS 2 (+, −) electrolyzer requires cell potentials of (1.47 and 1.74) V at (10 and 100) mA cm −2 , lower than the cell potentials of (1.57 and 1.92) V required by the RuO 2 @NF (+)//Pt–C@NF (−) device to achieve similar current densities. These experimental results and the Density Functional Theory (DFT) calculations unveil that our research offers a promising method for single atom implanted heterostructures that can be used for large-scale clean hydrogen production through water electrolysis.</abstract><doi>10.1039/D3TA05630A</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8545-7223</orcidid><orcidid>https://orcid.org/0000-0001-9281-0489</orcidid><orcidid>https://orcid.org/0000-0001-5122-9567</orcidid><orcidid>https://orcid.org/0000-0002-2976-6873</orcidid><orcidid>https://orcid.org/0000-0002-6672-5149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-02, Vol.12 (6), p.3489-3500
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D3TA05630A
source Royal Society Of Chemistry Journals 2008-
title Ruthenium single atoms implanted on NiS 2 -FeS 2 nanosheet heterostructures for efficacious water electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ruthenium%20single%20atoms%20implanted%20on%20NiS%202%20-FeS%202%20nanosheet%20heterostructures%20for%20efficacious%20water%20electrolysis&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ghising,%20Ram%20Babu&rft.date=2024-02-06&rft.volume=12&rft.issue=6&rft.spage=3489&rft.epage=3500&rft.pages=3489-3500&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA05630A&rft_dat=%3Ccrossref%3E10_1039_D3TA05630A%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true