Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields
Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO 3 , suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expect...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-11, Vol.11 (46), p.25484-25496 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25496 |
---|---|
container_issue | 46 |
container_start_page | 25484 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Wan, Hongyan Liu, Zenghui Zhuo, Fangping Xi, Jingwen Gao, Pan Zheng, Kun Jiang, Luyue Xu, Jun Li, Jingrui Zhang, Jie Zhuang, Jian Niu, Gang Zhang, Nan Ren, Wei Ye, Zuo-Guang |
description | Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO
3
, suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expected performances. Here we adopt a synergistic design strategy, namely by inducing ferroelectrically active ions into the PbHfO
3
structural matrix to soften the AFE order and induce a large maximum polarization, to enable the development of novel PbHfO
3
-based AFE materials of high performance suitable for applications under low electric fields. To implement this strategy, a novel solid solution of (1 −
x
)PbHfO
3
–
x
Pb(Zn
1/2
W
1/2
)O
3
is designed and prepared by the solid-state reaction method. Its crystal structure, microstructures, energy storage and strain performances, and phase transition behaviors are systematically investigated from both experimental and theoretical aspects. The resulting material exhibits a high recoverable energy storage density of 5.03 J cm
−3
and a large strain of 0.60% under a relatively low electric field of 200 kV cm
−1
, which proves the effectiveness of our synergistic strategy. Phenomenological modeling investigation associates these performances with the sharp jump in induced polarization and strain, which is consistent with the experimental results. This work not only results in a novel AFE candidate material for high energy storage and strain applications but also, more importantly, opens up a new way to design high-performance AFE materials with multifunctionality
via
softening the AFE order. |
doi_str_mv | 10.1039/D3TA05425J |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA05425J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA05425J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76J-36ad113416d544a906a7ce11b206cb94c61920cc2e29e1815e9b8965953272223</originalsourceid><addsrcrecordid>eNpFkMtqwzAUREVpoSHNpl9w1wW3etiytQzpIw2BFJq9kaVrR8WRguQQ8i_92Ca0pLOYmc2cxRByz-gjo0I9PYv1lBY5LxZXZMRpQbMyV_L60qvqlkxS-qInVZRKpUbk-_PoMXYuDc6AxeQ6D6EFDR4P8NHM2xUIyBqd0IL2g2sxxoA9miGeBin0zp59P7jg4eCGDWxctwE8Q4-QhhB1h6elhV7HU0tD1M7DDmMb4lZ7gwn23mKEPhzgAm4d9jbdkZtW9wknfzkm69eX9WyeLVdv77PpMjOlXGRCasuYyJm0RZ5rRaUuDTLWcCpNo3IjmeLUGI5cIatYgaqplCxUIXjJORdj8vCLNTGkFLGtd9FtdTzWjNbnZ-v_Z8UPboVtAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wan, Hongyan ; Liu, Zenghui ; Zhuo, Fangping ; Xi, Jingwen ; Gao, Pan ; Zheng, Kun ; Jiang, Luyue ; Xu, Jun ; Li, Jingrui ; Zhang, Jie ; Zhuang, Jian ; Niu, Gang ; Zhang, Nan ; Ren, Wei ; Ye, Zuo-Guang</creator><creatorcontrib>Wan, Hongyan ; Liu, Zenghui ; Zhuo, Fangping ; Xi, Jingwen ; Gao, Pan ; Zheng, Kun ; Jiang, Luyue ; Xu, Jun ; Li, Jingrui ; Zhang, Jie ; Zhuang, Jian ; Niu, Gang ; Zhang, Nan ; Ren, Wei ; Ye, Zuo-Guang</creatorcontrib><description>Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO
3
, suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expected performances. Here we adopt a synergistic design strategy, namely by inducing ferroelectrically active ions into the PbHfO
3
structural matrix to soften the AFE order and induce a large maximum polarization, to enable the development of novel PbHfO
3
-based AFE materials of high performance suitable for applications under low electric fields. To implement this strategy, a novel solid solution of (1 −
x
)PbHfO
3
–
x
Pb(Zn
1/2
W
1/2
)O
3
is designed and prepared by the solid-state reaction method. Its crystal structure, microstructures, energy storage and strain performances, and phase transition behaviors are systematically investigated from both experimental and theoretical aspects. The resulting material exhibits a high recoverable energy storage density of 5.03 J cm
−3
and a large strain of 0.60% under a relatively low electric field of 200 kV cm
−1
, which proves the effectiveness of our synergistic strategy. Phenomenological modeling investigation associates these performances with the sharp jump in induced polarization and strain, which is consistent with the experimental results. This work not only results in a novel AFE candidate material for high energy storage and strain applications but also, more importantly, opens up a new way to design high-performance AFE materials with multifunctionality
via
softening the AFE order.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA05425J</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-11, Vol.11 (46), p.25484-25496</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76J-36ad113416d544a906a7ce11b206cb94c61920cc2e29e1815e9b8965953272223</citedby><cites>FETCH-LOGICAL-c76J-36ad113416d544a906a7ce11b206cb94c61920cc2e29e1815e9b8965953272223</cites><orcidid>0000-0002-5606-2660 ; 0000-0002-4763-0160 ; 0000-0003-0348-068X ; 0000-0002-8813-8885 ; 0000-0003-2378-7304 ; 0000-0002-8515-429X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wan, Hongyan</creatorcontrib><creatorcontrib>Liu, Zenghui</creatorcontrib><creatorcontrib>Zhuo, Fangping</creatorcontrib><creatorcontrib>Xi, Jingwen</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Zheng, Kun</creatorcontrib><creatorcontrib>Jiang, Luyue</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Li, Jingrui</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zhuang, Jian</creatorcontrib><creatorcontrib>Niu, Gang</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Ren, Wei</creatorcontrib><creatorcontrib>Ye, Zuo-Guang</creatorcontrib><title>Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO
3
, suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expected performances. Here we adopt a synergistic design strategy, namely by inducing ferroelectrically active ions into the PbHfO
3
structural matrix to soften the AFE order and induce a large maximum polarization, to enable the development of novel PbHfO
3
-based AFE materials of high performance suitable for applications under low electric fields. To implement this strategy, a novel solid solution of (1 −
x
)PbHfO
3
–
x
Pb(Zn
1/2
W
1/2
)O
3
is designed and prepared by the solid-state reaction method. Its crystal structure, microstructures, energy storage and strain performances, and phase transition behaviors are systematically investigated from both experimental and theoretical aspects. The resulting material exhibits a high recoverable energy storage density of 5.03 J cm
−3
and a large strain of 0.60% under a relatively low electric field of 200 kV cm
−1
, which proves the effectiveness of our synergistic strategy. Phenomenological modeling investigation associates these performances with the sharp jump in induced polarization and strain, which is consistent with the experimental results. This work not only results in a novel AFE candidate material for high energy storage and strain applications but also, more importantly, opens up a new way to design high-performance AFE materials with multifunctionality
via
softening the AFE order.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkMtqwzAUREVpoSHNpl9w1wW3etiytQzpIw2BFJq9kaVrR8WRguQQ8i_92Ca0pLOYmc2cxRByz-gjo0I9PYv1lBY5LxZXZMRpQbMyV_L60qvqlkxS-qInVZRKpUbk-_PoMXYuDc6AxeQ6D6EFDR4P8NHM2xUIyBqd0IL2g2sxxoA9miGeBin0zp59P7jg4eCGDWxctwE8Q4-QhhB1h6elhV7HU0tD1M7DDmMb4lZ7gwn23mKEPhzgAm4d9jbdkZtW9wknfzkm69eX9WyeLVdv77PpMjOlXGRCasuYyJm0RZ5rRaUuDTLWcCpNo3IjmeLUGI5cIatYgaqplCxUIXjJORdj8vCLNTGkFLGtd9FtdTzWjNbnZ-v_Z8UPboVtAg</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Wan, Hongyan</creator><creator>Liu, Zenghui</creator><creator>Zhuo, Fangping</creator><creator>Xi, Jingwen</creator><creator>Gao, Pan</creator><creator>Zheng, Kun</creator><creator>Jiang, Luyue</creator><creator>Xu, Jun</creator><creator>Li, Jingrui</creator><creator>Zhang, Jie</creator><creator>Zhuang, Jian</creator><creator>Niu, Gang</creator><creator>Zhang, Nan</creator><creator>Ren, Wei</creator><creator>Ye, Zuo-Guang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5606-2660</orcidid><orcidid>https://orcid.org/0000-0002-4763-0160</orcidid><orcidid>https://orcid.org/0000-0003-0348-068X</orcidid><orcidid>https://orcid.org/0000-0002-8813-8885</orcidid><orcidid>https://orcid.org/0000-0003-2378-7304</orcidid><orcidid>https://orcid.org/0000-0002-8515-429X</orcidid></search><sort><creationdate>20231128</creationdate><title>Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields</title><author>Wan, Hongyan ; Liu, Zenghui ; Zhuo, Fangping ; Xi, Jingwen ; Gao, Pan ; Zheng, Kun ; Jiang, Luyue ; Xu, Jun ; Li, Jingrui ; Zhang, Jie ; Zhuang, Jian ; Niu, Gang ; Zhang, Nan ; Ren, Wei ; Ye, Zuo-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76J-36ad113416d544a906a7ce11b206cb94c61920cc2e29e1815e9b8965953272223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Hongyan</creatorcontrib><creatorcontrib>Liu, Zenghui</creatorcontrib><creatorcontrib>Zhuo, Fangping</creatorcontrib><creatorcontrib>Xi, Jingwen</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Zheng, Kun</creatorcontrib><creatorcontrib>Jiang, Luyue</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Li, Jingrui</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zhuang, Jian</creatorcontrib><creatorcontrib>Niu, Gang</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Ren, Wei</creatorcontrib><creatorcontrib>Ye, Zuo-Guang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Hongyan</au><au>Liu, Zenghui</au><au>Zhuo, Fangping</au><au>Xi, Jingwen</au><au>Gao, Pan</au><au>Zheng, Kun</au><au>Jiang, Luyue</au><au>Xu, Jun</au><au>Li, Jingrui</au><au>Zhang, Jie</au><au>Zhuang, Jian</au><au>Niu, Gang</au><au>Zhang, Nan</au><au>Ren, Wei</au><au>Ye, Zuo-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-11-28</date><risdate>2023</risdate><volume>11</volume><issue>46</issue><spage>25484</spage><epage>25496</epage><pages>25484-25496</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO
3
, suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expected performances. Here we adopt a synergistic design strategy, namely by inducing ferroelectrically active ions into the PbHfO
3
structural matrix to soften the AFE order and induce a large maximum polarization, to enable the development of novel PbHfO
3
-based AFE materials of high performance suitable for applications under low electric fields. To implement this strategy, a novel solid solution of (1 −
x
)PbHfO
3
–
x
Pb(Zn
1/2
W
1/2
)O
3
is designed and prepared by the solid-state reaction method. Its crystal structure, microstructures, energy storage and strain performances, and phase transition behaviors are systematically investigated from both experimental and theoretical aspects. The resulting material exhibits a high recoverable energy storage density of 5.03 J cm
−3
and a large strain of 0.60% under a relatively low electric field of 200 kV cm
−1
, which proves the effectiveness of our synergistic strategy. Phenomenological modeling investigation associates these performances with the sharp jump in induced polarization and strain, which is consistent with the experimental results. This work not only results in a novel AFE candidate material for high energy storage and strain applications but also, more importantly, opens up a new way to design high-performance AFE materials with multifunctionality
via
softening the AFE order.</abstract><doi>10.1039/D3TA05425J</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5606-2660</orcidid><orcidid>https://orcid.org/0000-0002-4763-0160</orcidid><orcidid>https://orcid.org/0000-0003-0348-068X</orcidid><orcidid>https://orcid.org/0000-0002-8813-8885</orcidid><orcidid>https://orcid.org/0000-0003-2378-7304</orcidid><orcidid>https://orcid.org/0000-0002-8515-429X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-11, Vol.11 (46), p.25484-25496 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3TA05425J |
source | Royal Society Of Chemistry Journals 2008- |
title | Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20design%20of%20a%20new%20PbHfO%203%20-based%20antiferroelectric%20solid%20solution%20with%20high%20energy%20storage%20and%20large%20strain%20performances%20under%20low%20electric%20fields&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wan,%20Hongyan&rft.date=2023-11-28&rft.volume=11&rft.issue=46&rft.spage=25484&rft.epage=25496&rft.pages=25484-25496&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA05425J&rft_dat=%3Ccrossref%3E10_1039_D3TA05425J%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |