Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields

Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO 3 , suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-11, Vol.11 (46), p.25484-25496
Hauptverfasser: Wan, Hongyan, Liu, Zenghui, Zhuo, Fangping, Xi, Jingwen, Gao, Pan, Zheng, Kun, Jiang, Luyue, Xu, Jun, Li, Jingrui, Zhang, Jie, Zhuang, Jian, Niu, Gang, Zhang, Nan, Ren, Wei, Ye, Zuo-Guang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25496
container_issue 46
container_start_page 25484
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Wan, Hongyan
Liu, Zenghui
Zhuo, Fangping
Xi, Jingwen
Gao, Pan
Zheng, Kun
Jiang, Luyue
Xu, Jun
Li, Jingrui
Zhang, Jie
Zhuang, Jian
Niu, Gang
Zhang, Nan
Ren, Wei
Ye, Zuo-Guang
description Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO 3 , suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expected performances. Here we adopt a synergistic design strategy, namely by inducing ferroelectrically active ions into the PbHfO 3 structural matrix to soften the AFE order and induce a large maximum polarization, to enable the development of novel PbHfO 3 -based AFE materials of high performance suitable for applications under low electric fields. To implement this strategy, a novel solid solution of (1 − x )PbHfO 3 – x Pb(Zn 1/2 W 1/2 )O 3 is designed and prepared by the solid-state reaction method. Its crystal structure, microstructures, energy storage and strain performances, and phase transition behaviors are systematically investigated from both experimental and theoretical aspects. The resulting material exhibits a high recoverable energy storage density of 5.03 J cm −3 and a large strain of 0.60% under a relatively low electric field of 200 kV cm −1 , which proves the effectiveness of our synergistic strategy. Phenomenological modeling investigation associates these performances with the sharp jump in induced polarization and strain, which is consistent with the experimental results. This work not only results in a novel AFE candidate material for high energy storage and strain applications but also, more importantly, opens up a new way to design high-performance AFE materials with multifunctionality via softening the AFE order.
doi_str_mv 10.1039/D3TA05425J
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA05425J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA05425J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76J-36ad113416d544a906a7ce11b206cb94c61920cc2e29e1815e9b8965953272223</originalsourceid><addsrcrecordid>eNpFkMtqwzAUREVpoSHNpl9w1wW3etiytQzpIw2BFJq9kaVrR8WRguQQ8i_92Ca0pLOYmc2cxRByz-gjo0I9PYv1lBY5LxZXZMRpQbMyV_L60qvqlkxS-qInVZRKpUbk-_PoMXYuDc6AxeQ6D6EFDR4P8NHM2xUIyBqd0IL2g2sxxoA9miGeBin0zp59P7jg4eCGDWxctwE8Q4-QhhB1h6elhV7HU0tD1M7DDmMb4lZ7gwn23mKEPhzgAm4d9jbdkZtW9wknfzkm69eX9WyeLVdv77PpMjOlXGRCasuYyJm0RZ5rRaUuDTLWcCpNo3IjmeLUGI5cIatYgaqplCxUIXjJORdj8vCLNTGkFLGtd9FtdTzWjNbnZ-v_Z8UPboVtAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wan, Hongyan ; Liu, Zenghui ; Zhuo, Fangping ; Xi, Jingwen ; Gao, Pan ; Zheng, Kun ; Jiang, Luyue ; Xu, Jun ; Li, Jingrui ; Zhang, Jie ; Zhuang, Jian ; Niu, Gang ; Zhang, Nan ; Ren, Wei ; Ye, Zuo-Guang</creator><creatorcontrib>Wan, Hongyan ; Liu, Zenghui ; Zhuo, Fangping ; Xi, Jingwen ; Gao, Pan ; Zheng, Kun ; Jiang, Luyue ; Xu, Jun ; Li, Jingrui ; Zhang, Jie ; Zhuang, Jian ; Niu, Gang ; Zhang, Nan ; Ren, Wei ; Ye, Zuo-Guang</creatorcontrib><description>Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO 3 , suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expected performances. Here we adopt a synergistic design strategy, namely by inducing ferroelectrically active ions into the PbHfO 3 structural matrix to soften the AFE order and induce a large maximum polarization, to enable the development of novel PbHfO 3 -based AFE materials of high performance suitable for applications under low electric fields. To implement this strategy, a novel solid solution of (1 − x )PbHfO 3 – x Pb(Zn 1/2 W 1/2 )O 3 is designed and prepared by the solid-state reaction method. Its crystal structure, microstructures, energy storage and strain performances, and phase transition behaviors are systematically investigated from both experimental and theoretical aspects. The resulting material exhibits a high recoverable energy storage density of 5.03 J cm −3 and a large strain of 0.60% under a relatively low electric field of 200 kV cm −1 , which proves the effectiveness of our synergistic strategy. Phenomenological modeling investigation associates these performances with the sharp jump in induced polarization and strain, which is consistent with the experimental results. This work not only results in a novel AFE candidate material for high energy storage and strain applications but also, more importantly, opens up a new way to design high-performance AFE materials with multifunctionality via softening the AFE order.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA05425J</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-11, Vol.11 (46), p.25484-25496</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76J-36ad113416d544a906a7ce11b206cb94c61920cc2e29e1815e9b8965953272223</citedby><cites>FETCH-LOGICAL-c76J-36ad113416d544a906a7ce11b206cb94c61920cc2e29e1815e9b8965953272223</cites><orcidid>0000-0002-5606-2660 ; 0000-0002-4763-0160 ; 0000-0003-0348-068X ; 0000-0002-8813-8885 ; 0000-0003-2378-7304 ; 0000-0002-8515-429X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wan, Hongyan</creatorcontrib><creatorcontrib>Liu, Zenghui</creatorcontrib><creatorcontrib>Zhuo, Fangping</creatorcontrib><creatorcontrib>Xi, Jingwen</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Zheng, Kun</creatorcontrib><creatorcontrib>Jiang, Luyue</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Li, Jingrui</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zhuang, Jian</creatorcontrib><creatorcontrib>Niu, Gang</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Ren, Wei</creatorcontrib><creatorcontrib>Ye, Zuo-Guang</creatorcontrib><title>Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO 3 , suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expected performances. Here we adopt a synergistic design strategy, namely by inducing ferroelectrically active ions into the PbHfO 3 structural matrix to soften the AFE order and induce a large maximum polarization, to enable the development of novel PbHfO 3 -based AFE materials of high performance suitable for applications under low electric fields. To implement this strategy, a novel solid solution of (1 − x )PbHfO 3 – x Pb(Zn 1/2 W 1/2 )O 3 is designed and prepared by the solid-state reaction method. Its crystal structure, microstructures, energy storage and strain performances, and phase transition behaviors are systematically investigated from both experimental and theoretical aspects. The resulting material exhibits a high recoverable energy storage density of 5.03 J cm −3 and a large strain of 0.60% under a relatively low electric field of 200 kV cm −1 , which proves the effectiveness of our synergistic strategy. Phenomenological modeling investigation associates these performances with the sharp jump in induced polarization and strain, which is consistent with the experimental results. This work not only results in a novel AFE candidate material for high energy storage and strain applications but also, more importantly, opens up a new way to design high-performance AFE materials with multifunctionality via softening the AFE order.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkMtqwzAUREVpoSHNpl9w1wW3etiytQzpIw2BFJq9kaVrR8WRguQQ8i_92Ca0pLOYmc2cxRByz-gjo0I9PYv1lBY5LxZXZMRpQbMyV_L60qvqlkxS-qInVZRKpUbk-_PoMXYuDc6AxeQ6D6EFDR4P8NHM2xUIyBqd0IL2g2sxxoA9miGeBin0zp59P7jg4eCGDWxctwE8Q4-QhhB1h6elhV7HU0tD1M7DDmMb4lZ7gwn23mKEPhzgAm4d9jbdkZtW9wknfzkm69eX9WyeLVdv77PpMjOlXGRCasuYyJm0RZ5rRaUuDTLWcCpNo3IjmeLUGI5cIatYgaqplCxUIXjJORdj8vCLNTGkFLGtd9FtdTzWjNbnZ-v_Z8UPboVtAg</recordid><startdate>20231128</startdate><enddate>20231128</enddate><creator>Wan, Hongyan</creator><creator>Liu, Zenghui</creator><creator>Zhuo, Fangping</creator><creator>Xi, Jingwen</creator><creator>Gao, Pan</creator><creator>Zheng, Kun</creator><creator>Jiang, Luyue</creator><creator>Xu, Jun</creator><creator>Li, Jingrui</creator><creator>Zhang, Jie</creator><creator>Zhuang, Jian</creator><creator>Niu, Gang</creator><creator>Zhang, Nan</creator><creator>Ren, Wei</creator><creator>Ye, Zuo-Guang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5606-2660</orcidid><orcidid>https://orcid.org/0000-0002-4763-0160</orcidid><orcidid>https://orcid.org/0000-0003-0348-068X</orcidid><orcidid>https://orcid.org/0000-0002-8813-8885</orcidid><orcidid>https://orcid.org/0000-0003-2378-7304</orcidid><orcidid>https://orcid.org/0000-0002-8515-429X</orcidid></search><sort><creationdate>20231128</creationdate><title>Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields</title><author>Wan, Hongyan ; Liu, Zenghui ; Zhuo, Fangping ; Xi, Jingwen ; Gao, Pan ; Zheng, Kun ; Jiang, Luyue ; Xu, Jun ; Li, Jingrui ; Zhang, Jie ; Zhuang, Jian ; Niu, Gang ; Zhang, Nan ; Ren, Wei ; Ye, Zuo-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76J-36ad113416d544a906a7ce11b206cb94c61920cc2e29e1815e9b8965953272223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Hongyan</creatorcontrib><creatorcontrib>Liu, Zenghui</creatorcontrib><creatorcontrib>Zhuo, Fangping</creatorcontrib><creatorcontrib>Xi, Jingwen</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Zheng, Kun</creatorcontrib><creatorcontrib>Jiang, Luyue</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Li, Jingrui</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zhuang, Jian</creatorcontrib><creatorcontrib>Niu, Gang</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Ren, Wei</creatorcontrib><creatorcontrib>Ye, Zuo-Guang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Hongyan</au><au>Liu, Zenghui</au><au>Zhuo, Fangping</au><au>Xi, Jingwen</au><au>Gao, Pan</au><au>Zheng, Kun</au><au>Jiang, Luyue</au><au>Xu, Jun</au><au>Li, Jingrui</au><au>Zhang, Jie</au><au>Zhuang, Jian</au><au>Niu, Gang</au><au>Zhang, Nan</au><au>Ren, Wei</au><au>Ye, Zuo-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-11-28</date><risdate>2023</risdate><volume>11</volume><issue>46</issue><spage>25484</spage><epage>25496</epage><pages>25484-25496</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Antiferroelectric (AFE) materials have gained significant attention due to their potential multifunctionality. However, prototypical AFE materials, such as PbHfO 3 , suffer from poor sinterability, complex structures, and a high critical electric field, making it difficult for them to achieve expected performances. Here we adopt a synergistic design strategy, namely by inducing ferroelectrically active ions into the PbHfO 3 structural matrix to soften the AFE order and induce a large maximum polarization, to enable the development of novel PbHfO 3 -based AFE materials of high performance suitable for applications under low electric fields. To implement this strategy, a novel solid solution of (1 − x )PbHfO 3 – x Pb(Zn 1/2 W 1/2 )O 3 is designed and prepared by the solid-state reaction method. Its crystal structure, microstructures, energy storage and strain performances, and phase transition behaviors are systematically investigated from both experimental and theoretical aspects. The resulting material exhibits a high recoverable energy storage density of 5.03 J cm −3 and a large strain of 0.60% under a relatively low electric field of 200 kV cm −1 , which proves the effectiveness of our synergistic strategy. Phenomenological modeling investigation associates these performances with the sharp jump in induced polarization and strain, which is consistent with the experimental results. This work not only results in a novel AFE candidate material for high energy storage and strain applications but also, more importantly, opens up a new way to design high-performance AFE materials with multifunctionality via softening the AFE order.</abstract><doi>10.1039/D3TA05425J</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5606-2660</orcidid><orcidid>https://orcid.org/0000-0002-4763-0160</orcidid><orcidid>https://orcid.org/0000-0003-0348-068X</orcidid><orcidid>https://orcid.org/0000-0002-8813-8885</orcidid><orcidid>https://orcid.org/0000-0003-2378-7304</orcidid><orcidid>https://orcid.org/0000-0002-8515-429X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-11, Vol.11 (46), p.25484-25496
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D3TA05425J
source Royal Society Of Chemistry Journals 2008-
title Synergistic design of a new PbHfO 3 -based antiferroelectric solid solution with high energy storage and large strain performances under low electric fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20design%20of%20a%20new%20PbHfO%203%20-based%20antiferroelectric%20solid%20solution%20with%20high%20energy%20storage%20and%20large%20strain%20performances%20under%20low%20electric%20fields&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wan,%20Hongyan&rft.date=2023-11-28&rft.volume=11&rft.issue=46&rft.spage=25484&rft.epage=25496&rft.pages=25484-25496&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA05425J&rft_dat=%3Ccrossref%3E10_1039_D3TA05425J%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true