Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit
Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to th...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-09, Vol.11 (35), p.18651-18659 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18659 |
---|---|
container_issue | 35 |
container_start_page | 18651 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Zhong, Yaqiong Hu, Xiaojuan Sarker, Debalaya Su, Xianli Xia, Qingrui Xu, Liangliang Yang, Chao Tang, Xinfeng Levchenko, Sergey V. Han, Zhongkang Cui, Jiaolin |
description | Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only a small fraction of potential candidates has been experimentally and/or computationally scanned thus far. By employing an artificial intelligence (AI) approach based on compressed-sensing symbolic regression analysis of experimental data in an active-learning framework, we have not only identified a trend in the materials composition for superior TE performance, but also predicted and experimentally synthesized several high-performing TE chalcogenides. In particular, p-type Cu
0.45
Ag
0.55
GaTe
2
shows a very high experimental figure of merit (
zT
) ∼1.90 at 770 K using experimentally measured heat capacity (
C
p
). The present work demonstrates not only experimental realization of AI-predicted high-
zT
TE, but also the importance and potential of physically informed descriptors in material science, particularly for relatively small but well-controlled datasets typically available from experiments. |
doi_str_mv | 10.1039/D3TA03990K |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA03990K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA03990K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76K-a79c67e35ac0b2434e07e89819e994677cb68b4812b0a83c46b30b67332c8dc83</originalsourceid><addsrcrecordid>eNpFkE1OwzAQhS0EElXphhN4jRRw4tQ_y6qFglqJTfaRM5kkRmlT2S60N0BixxE5Ca5AMIv3ZjPf6D1CrlN2mzKu7xa8mEXXbHVGRhmbskTmWpz_7Updkon3LyyOYkxoPSIfCxMMNVvTH4MFTw0A9uhMQE9DhxQPO3R2g9tgelpbD8MruiMdGjrf0_Tr_ZMe6KyNsjQF0oxWxmN9unSbIYIgOAsUOtPD0OLW1hH7ZkNHO9t2tLHt3uEJtolPwhW5aEzvcfLrY1I83Bfzx2T9vHyaz9YJSLFKjNQgJPKpAVZlOc-RSVRapRq1zoWUUAlV5SrNKmYUh1xUnFVCcp6BqkHxMbn5wYIbvHfYlLuY0LhjmbLyVGT5XyT_BpDEZyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhong, Yaqiong ; Hu, Xiaojuan ; Sarker, Debalaya ; Su, Xianli ; Xia, Qingrui ; Xu, Liangliang ; Yang, Chao ; Tang, Xinfeng ; Levchenko, Sergey V. ; Han, Zhongkang ; Cui, Jiaolin</creator><creatorcontrib>Zhong, Yaqiong ; Hu, Xiaojuan ; Sarker, Debalaya ; Su, Xianli ; Xia, Qingrui ; Xu, Liangliang ; Yang, Chao ; Tang, Xinfeng ; Levchenko, Sergey V. ; Han, Zhongkang ; Cui, Jiaolin</creatorcontrib><description>Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only a small fraction of potential candidates has been experimentally and/or computationally scanned thus far. By employing an artificial intelligence (AI) approach based on compressed-sensing symbolic regression analysis of experimental data in an active-learning framework, we have not only identified a trend in the materials composition for superior TE performance, but also predicted and experimentally synthesized several high-performing TE chalcogenides. In particular, p-type Cu
0.45
Ag
0.55
GaTe
2
shows a very high experimental figure of merit (
zT
) ∼1.90 at 770 K using experimentally measured heat capacity (
C
p
). The present work demonstrates not only experimental realization of AI-predicted high-
zT
TE, but also the importance and potential of physically informed descriptors in material science, particularly for relatively small but well-controlled datasets typically available from experiments.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA03990K</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-09, Vol.11 (35), p.18651-18659</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76K-a79c67e35ac0b2434e07e89819e994677cb68b4812b0a83c46b30b67332c8dc83</citedby><cites>FETCH-LOGICAL-c76K-a79c67e35ac0b2434e07e89819e994677cb68b4812b0a83c46b30b67332c8dc83</cites><orcidid>0000-0003-4428-6461 ; 0000-0003-4620-145X ; 0000-0002-4110-8347 ; 0000-0002-0715-5529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhong, Yaqiong</creatorcontrib><creatorcontrib>Hu, Xiaojuan</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Su, Xianli</creatorcontrib><creatorcontrib>Xia, Qingrui</creatorcontrib><creatorcontrib>Xu, Liangliang</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Tang, Xinfeng</creatorcontrib><creatorcontrib>Levchenko, Sergey V.</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Cui, Jiaolin</creatorcontrib><title>Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only a small fraction of potential candidates has been experimentally and/or computationally scanned thus far. By employing an artificial intelligence (AI) approach based on compressed-sensing symbolic regression analysis of experimental data in an active-learning framework, we have not only identified a trend in the materials composition for superior TE performance, but also predicted and experimentally synthesized several high-performing TE chalcogenides. In particular, p-type Cu
0.45
Ag
0.55
GaTe
2
shows a very high experimental figure of merit (
zT
) ∼1.90 at 770 K using experimentally measured heat capacity (
C
p
). The present work demonstrates not only experimental realization of AI-predicted high-
zT
TE, but also the importance and potential of physically informed descriptors in material science, particularly for relatively small but well-controlled datasets typically available from experiments.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1OwzAQhS0EElXphhN4jRRw4tQ_y6qFglqJTfaRM5kkRmlT2S60N0BixxE5Ca5AMIv3ZjPf6D1CrlN2mzKu7xa8mEXXbHVGRhmbskTmWpz_7Updkon3LyyOYkxoPSIfCxMMNVvTH4MFTw0A9uhMQE9DhxQPO3R2g9tgelpbD8MruiMdGjrf0_Tr_ZMe6KyNsjQF0oxWxmN9unSbIYIgOAsUOtPD0OLW1hH7ZkNHO9t2tLHt3uEJtolPwhW5aEzvcfLrY1I83Bfzx2T9vHyaz9YJSLFKjNQgJPKpAVZlOc-RSVRapRq1zoWUUAlV5SrNKmYUh1xUnFVCcp6BqkHxMbn5wYIbvHfYlLuY0LhjmbLyVGT5XyT_BpDEZyM</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Zhong, Yaqiong</creator><creator>Hu, Xiaojuan</creator><creator>Sarker, Debalaya</creator><creator>Su, Xianli</creator><creator>Xia, Qingrui</creator><creator>Xu, Liangliang</creator><creator>Yang, Chao</creator><creator>Tang, Xinfeng</creator><creator>Levchenko, Sergey V.</creator><creator>Han, Zhongkang</creator><creator>Cui, Jiaolin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4428-6461</orcidid><orcidid>https://orcid.org/0000-0003-4620-145X</orcidid><orcidid>https://orcid.org/0000-0002-4110-8347</orcidid><orcidid>https://orcid.org/0000-0002-0715-5529</orcidid></search><sort><creationdate>20230912</creationdate><title>Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit</title><author>Zhong, Yaqiong ; Hu, Xiaojuan ; Sarker, Debalaya ; Su, Xianli ; Xia, Qingrui ; Xu, Liangliang ; Yang, Chao ; Tang, Xinfeng ; Levchenko, Sergey V. ; Han, Zhongkang ; Cui, Jiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76K-a79c67e35ac0b2434e07e89819e994677cb68b4812b0a83c46b30b67332c8dc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yaqiong</creatorcontrib><creatorcontrib>Hu, Xiaojuan</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Su, Xianli</creatorcontrib><creatorcontrib>Xia, Qingrui</creatorcontrib><creatorcontrib>Xu, Liangliang</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Tang, Xinfeng</creatorcontrib><creatorcontrib>Levchenko, Sergey V.</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Cui, Jiaolin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yaqiong</au><au>Hu, Xiaojuan</au><au>Sarker, Debalaya</au><au>Su, Xianli</au><au>Xia, Qingrui</au><au>Xu, Liangliang</au><au>Yang, Chao</au><au>Tang, Xinfeng</au><au>Levchenko, Sergey V.</au><au>Han, Zhongkang</au><au>Cui, Jiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-09-12</date><risdate>2023</risdate><volume>11</volume><issue>35</issue><spage>18651</spage><epage>18659</epage><pages>18651-18659</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only a small fraction of potential candidates has been experimentally and/or computationally scanned thus far. By employing an artificial intelligence (AI) approach based on compressed-sensing symbolic regression analysis of experimental data in an active-learning framework, we have not only identified a trend in the materials composition for superior TE performance, but also predicted and experimentally synthesized several high-performing TE chalcogenides. In particular, p-type Cu
0.45
Ag
0.55
GaTe
2
shows a very high experimental figure of merit (
zT
) ∼1.90 at 770 K using experimentally measured heat capacity (
C
p
). The present work demonstrates not only experimental realization of AI-predicted high-
zT
TE, but also the importance and potential of physically informed descriptors in material science, particularly for relatively small but well-controlled datasets typically available from experiments.</abstract><doi>10.1039/D3TA03990K</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4428-6461</orcidid><orcidid>https://orcid.org/0000-0003-4620-145X</orcidid><orcidid>https://orcid.org/0000-0002-4110-8347</orcidid><orcidid>https://orcid.org/0000-0002-0715-5529</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-09, Vol.11 (35), p.18651-18659 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3TA03990K |
source | Royal Society Of Chemistry Journals 2008- |
title | Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20analytics%20accelerates%20the%20experimental%20discovery%20of%20Cu%201%E2%88%92%20x%20Ag%20x%20GaTe%202%20based%20thermoelectric%20chalcogenides%20with%20high%20figure%20of%20merit&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhong,%20Yaqiong&rft.date=2023-09-12&rft.volume=11&rft.issue=35&rft.spage=18651&rft.epage=18659&rft.pages=18651-18659&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA03990K&rft_dat=%3Ccrossref%3E10_1039_D3TA03990K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |