Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit

Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-09, Vol.11 (35), p.18651-18659
Hauptverfasser: Zhong, Yaqiong, Hu, Xiaojuan, Sarker, Debalaya, Su, Xianli, Xia, Qingrui, Xu, Liangliang, Yang, Chao, Tang, Xinfeng, Levchenko, Sergey V., Han, Zhongkang, Cui, Jiaolin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18659
container_issue 35
container_start_page 18651
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Zhong, Yaqiong
Hu, Xiaojuan
Sarker, Debalaya
Su, Xianli
Xia, Qingrui
Xu, Liangliang
Yang, Chao
Tang, Xinfeng
Levchenko, Sergey V.
Han, Zhongkang
Cui, Jiaolin
description Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only a small fraction of potential candidates has been experimentally and/or computationally scanned thus far. By employing an artificial intelligence (AI) approach based on compressed-sensing symbolic regression analysis of experimental data in an active-learning framework, we have not only identified a trend in the materials composition for superior TE performance, but also predicted and experimentally synthesized several high-performing TE chalcogenides. In particular, p-type Cu 0.45 Ag 0.55 GaTe 2 shows a very high experimental figure of merit ( zT ) ∼1.90 at 770 K using experimentally measured heat capacity ( C p ). The present work demonstrates not only experimental realization of AI-predicted high- zT TE, but also the importance and potential of physically informed descriptors in material science, particularly for relatively small but well-controlled datasets typically available from experiments.
doi_str_mv 10.1039/D3TA03990K
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA03990K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA03990K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76K-a79c67e35ac0b2434e07e89819e994677cb68b4812b0a83c46b30b67332c8dc83</originalsourceid><addsrcrecordid>eNpFkE1OwzAQhS0EElXphhN4jRRw4tQ_y6qFglqJTfaRM5kkRmlT2S60N0BixxE5Ca5AMIv3ZjPf6D1CrlN2mzKu7xa8mEXXbHVGRhmbskTmWpz_7Updkon3LyyOYkxoPSIfCxMMNVvTH4MFTw0A9uhMQE9DhxQPO3R2g9tgelpbD8MruiMdGjrf0_Tr_ZMe6KyNsjQF0oxWxmN9unSbIYIgOAsUOtPD0OLW1hH7ZkNHO9t2tLHt3uEJtolPwhW5aEzvcfLrY1I83Bfzx2T9vHyaz9YJSLFKjNQgJPKpAVZlOc-RSVRapRq1zoWUUAlV5SrNKmYUh1xUnFVCcp6BqkHxMbn5wYIbvHfYlLuY0LhjmbLyVGT5XyT_BpDEZyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhong, Yaqiong ; Hu, Xiaojuan ; Sarker, Debalaya ; Su, Xianli ; Xia, Qingrui ; Xu, Liangliang ; Yang, Chao ; Tang, Xinfeng ; Levchenko, Sergey V. ; Han, Zhongkang ; Cui, Jiaolin</creator><creatorcontrib>Zhong, Yaqiong ; Hu, Xiaojuan ; Sarker, Debalaya ; Su, Xianli ; Xia, Qingrui ; Xu, Liangliang ; Yang, Chao ; Tang, Xinfeng ; Levchenko, Sergey V. ; Han, Zhongkang ; Cui, Jiaolin</creatorcontrib><description>Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only a small fraction of potential candidates has been experimentally and/or computationally scanned thus far. By employing an artificial intelligence (AI) approach based on compressed-sensing symbolic regression analysis of experimental data in an active-learning framework, we have not only identified a trend in the materials composition for superior TE performance, but also predicted and experimentally synthesized several high-performing TE chalcogenides. In particular, p-type Cu 0.45 Ag 0.55 GaTe 2 shows a very high experimental figure of merit ( zT ) ∼1.90 at 770 K using experimentally measured heat capacity ( C p ). The present work demonstrates not only experimental realization of AI-predicted high- zT TE, but also the importance and potential of physically informed descriptors in material science, particularly for relatively small but well-controlled datasets typically available from experiments.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA03990K</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-09, Vol.11 (35), p.18651-18659</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76K-a79c67e35ac0b2434e07e89819e994677cb68b4812b0a83c46b30b67332c8dc83</citedby><cites>FETCH-LOGICAL-c76K-a79c67e35ac0b2434e07e89819e994677cb68b4812b0a83c46b30b67332c8dc83</cites><orcidid>0000-0003-4428-6461 ; 0000-0003-4620-145X ; 0000-0002-4110-8347 ; 0000-0002-0715-5529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhong, Yaqiong</creatorcontrib><creatorcontrib>Hu, Xiaojuan</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Su, Xianli</creatorcontrib><creatorcontrib>Xia, Qingrui</creatorcontrib><creatorcontrib>Xu, Liangliang</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Tang, Xinfeng</creatorcontrib><creatorcontrib>Levchenko, Sergey V.</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Cui, Jiaolin</creatorcontrib><title>Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only a small fraction of potential candidates has been experimentally and/or computationally scanned thus far. By employing an artificial intelligence (AI) approach based on compressed-sensing symbolic regression analysis of experimental data in an active-learning framework, we have not only identified a trend in the materials composition for superior TE performance, but also predicted and experimentally synthesized several high-performing TE chalcogenides. In particular, p-type Cu 0.45 Ag 0.55 GaTe 2 shows a very high experimental figure of merit ( zT ) ∼1.90 at 770 K using experimentally measured heat capacity ( C p ). The present work demonstrates not only experimental realization of AI-predicted high- zT TE, but also the importance and potential of physically informed descriptors in material science, particularly for relatively small but well-controlled datasets typically available from experiments.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1OwzAQhS0EElXphhN4jRRw4tQ_y6qFglqJTfaRM5kkRmlT2S60N0BixxE5Ca5AMIv3ZjPf6D1CrlN2mzKu7xa8mEXXbHVGRhmbskTmWpz_7Updkon3LyyOYkxoPSIfCxMMNVvTH4MFTw0A9uhMQE9DhxQPO3R2g9tgelpbD8MruiMdGjrf0_Tr_ZMe6KyNsjQF0oxWxmN9unSbIYIgOAsUOtPD0OLW1hH7ZkNHO9t2tLHt3uEJtolPwhW5aEzvcfLrY1I83Bfzx2T9vHyaz9YJSLFKjNQgJPKpAVZlOc-RSVRapRq1zoWUUAlV5SrNKmYUh1xUnFVCcp6BqkHxMbn5wYIbvHfYlLuY0LhjmbLyVGT5XyT_BpDEZyM</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>Zhong, Yaqiong</creator><creator>Hu, Xiaojuan</creator><creator>Sarker, Debalaya</creator><creator>Su, Xianli</creator><creator>Xia, Qingrui</creator><creator>Xu, Liangliang</creator><creator>Yang, Chao</creator><creator>Tang, Xinfeng</creator><creator>Levchenko, Sergey V.</creator><creator>Han, Zhongkang</creator><creator>Cui, Jiaolin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4428-6461</orcidid><orcidid>https://orcid.org/0000-0003-4620-145X</orcidid><orcidid>https://orcid.org/0000-0002-4110-8347</orcidid><orcidid>https://orcid.org/0000-0002-0715-5529</orcidid></search><sort><creationdate>20230912</creationdate><title>Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit</title><author>Zhong, Yaqiong ; Hu, Xiaojuan ; Sarker, Debalaya ; Su, Xianli ; Xia, Qingrui ; Xu, Liangliang ; Yang, Chao ; Tang, Xinfeng ; Levchenko, Sergey V. ; Han, Zhongkang ; Cui, Jiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76K-a79c67e35ac0b2434e07e89819e994677cb68b4812b0a83c46b30b67332c8dc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yaqiong</creatorcontrib><creatorcontrib>Hu, Xiaojuan</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Su, Xianli</creatorcontrib><creatorcontrib>Xia, Qingrui</creatorcontrib><creatorcontrib>Xu, Liangliang</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Tang, Xinfeng</creatorcontrib><creatorcontrib>Levchenko, Sergey V.</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Cui, Jiaolin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yaqiong</au><au>Hu, Xiaojuan</au><au>Sarker, Debalaya</au><au>Su, Xianli</au><au>Xia, Qingrui</au><au>Xu, Liangliang</au><au>Yang, Chao</au><au>Tang, Xinfeng</au><au>Levchenko, Sergey V.</au><au>Han, Zhongkang</au><au>Cui, Jiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-09-12</date><risdate>2023</risdate><volume>11</volume><issue>35</issue><spage>18651</spage><epage>18659</epage><pages>18651-18659</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Thermoelectric (TE) materials allow us to harvest energy practically from any heat source, including heat that would be otherwise wasted. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only a small fraction of potential candidates has been experimentally and/or computationally scanned thus far. By employing an artificial intelligence (AI) approach based on compressed-sensing symbolic regression analysis of experimental data in an active-learning framework, we have not only identified a trend in the materials composition for superior TE performance, but also predicted and experimentally synthesized several high-performing TE chalcogenides. In particular, p-type Cu 0.45 Ag 0.55 GaTe 2 shows a very high experimental figure of merit ( zT ) ∼1.90 at 770 K using experimentally measured heat capacity ( C p ). The present work demonstrates not only experimental realization of AI-predicted high- zT TE, but also the importance and potential of physically informed descriptors in material science, particularly for relatively small but well-controlled datasets typically available from experiments.</abstract><doi>10.1039/D3TA03990K</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4428-6461</orcidid><orcidid>https://orcid.org/0000-0003-4620-145X</orcidid><orcidid>https://orcid.org/0000-0002-4110-8347</orcidid><orcidid>https://orcid.org/0000-0002-0715-5529</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-09, Vol.11 (35), p.18651-18659
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D3TA03990K
source Royal Society Of Chemistry Journals 2008-
title Data analytics accelerates the experimental discovery of Cu 1− x Ag x GaTe 2 based thermoelectric chalcogenides with high figure of merit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20analytics%20accelerates%20the%20experimental%20discovery%20of%20Cu%201%E2%88%92%20x%20Ag%20x%20GaTe%202%20based%20thermoelectric%20chalcogenides%20with%20high%20figure%20of%20merit&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhong,%20Yaqiong&rft.date=2023-09-12&rft.volume=11&rft.issue=35&rft.spage=18651&rft.epage=18659&rft.pages=18651-18659&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA03990K&rft_dat=%3Ccrossref%3E10_1039_D3TA03990K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true