Boosting high-rate lithium storage in Li 3 VO 4 via a honeycomb structure design and electrochemical reconstruction
While the intrinsic safety and capacity merits of Li 3 VO 4 endow it with great promise in LIBs, the moderate lifespan under a high rate hinders its practical application. Herein, we demonstrate for the first time, the boosting of an unprecedented high-rate performance of the Li 3 VO 4 -based electr...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (23), p.12164-12175 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12175 |
---|---|
container_issue | 23 |
container_start_page | 12164 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Bai, Xiaomeng Li, Daobo Zhang, Dongmei Yang, Song Pei, Cunyuan Sun, Bing Ni, Shibing |
description | While the intrinsic safety and capacity merits of Li
3
VO
4
endow it with great promise in LIBs, the moderate lifespan under a high rate hinders its practical application. Herein, we demonstrate for the first time, the boosting of an unprecedented high-rate performance of the Li
3
VO
4
-based electrode
via
a novel honeycomb architecture design and its electrochemical reconstruction upon cycling. Li
3
VO
4
/C honeycombs (LVO/C Hs) consisting of primary carbon-coated Li
3
VO
4
nanoparticles have been constructed by a self-assembly strategy, through a developed electrospraying approach using polyvinyl alcohol as a morphology regulator. In the LVO/C Hs, the local LVO@C nanoparticle constituents render high activity, and the integral honeycomb-like architecture facilitates electron transfer and promotes a synergistic effect between the constituents. The lithiation-driven electrochemical reconstruction in cycling ensures the integrity of the honeycomb structure, and at the same time, the LVO nanoparticles are refined to 3–5 nm, producing abundant nanopores. The self-reconfigured structures with ultrasmall nanoparticles and large void space effectively shorten the ion diffusion pathway. The above structural characteristics trigger a continuous high capacitive charge storage, giving rise to unprecedented high-rate performance. The LVO/C Hs electrode delivered a discharge capacity recovery of 590.0 mA h g
−1
at 0.5 A g
−1
after 6 periodic rate performance tests from 0.5 to 10 A g
−1
over 430 cycles. When cycling at a high discharge current of 6 A g
−1
, the LVO/C Hs electrode could maintain stable cycling over 14 000 cycles with a high discharge capacity of 324.5 mA h g
−1
. The lifespan of the LVO/C Hs is the longest among all the reported LVO-based electrodes, demonstrating great potential in long-life and high-rate applications such as electric vehicles and power stations. |
doi_str_mv | 10.1039/D3TA01817B |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA01817B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA01817B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76B-90c405ea6935e7cd465b3d738a4609c287a9cef0f66d00d7ca5ca5f3a5e8651a3</originalsourceid><addsrcrecordid>eNpFkM1qwzAQhEVpoSHNpU-w54LbdWRJ1jFJfyGQS-jVKPLaVrGlItmFvH1TUtphYObwMYdh7DbH-xy5fnjk-xXmZa7WF2y2RIGZKrS8_Otlec0WKX3gSSWi1HrG0jqENDrfQufaLotmJOjd2LlpgDSGaFoC52HrgMP7Dgr4cgYMdMHT0YbhcILiZMcpEtSUXOvB-BqoJzvGYDsanDU9RLLBn0kX_A27akyfaPGbc7Z_ftpvXrPt7uVts9pmVsl1ptEWKMhIzQUpWxdSHHiteGkKidouS2W0pQYbKWvEWlkjTm64EVRKkRs-Z3fnWRtDSpGa6jO6wcRjlWP1c1j1fxj_BqL4Xto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boosting high-rate lithium storage in Li 3 VO 4 via a honeycomb structure design and electrochemical reconstruction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Bai, Xiaomeng ; Li, Daobo ; Zhang, Dongmei ; Yang, Song ; Pei, Cunyuan ; Sun, Bing ; Ni, Shibing</creator><creatorcontrib>Bai, Xiaomeng ; Li, Daobo ; Zhang, Dongmei ; Yang, Song ; Pei, Cunyuan ; Sun, Bing ; Ni, Shibing</creatorcontrib><description>While the intrinsic safety and capacity merits of Li
3
VO
4
endow it with great promise in LIBs, the moderate lifespan under a high rate hinders its practical application. Herein, we demonstrate for the first time, the boosting of an unprecedented high-rate performance of the Li
3
VO
4
-based electrode
via
a novel honeycomb architecture design and its electrochemical reconstruction upon cycling. Li
3
VO
4
/C honeycombs (LVO/C Hs) consisting of primary carbon-coated Li
3
VO
4
nanoparticles have been constructed by a self-assembly strategy, through a developed electrospraying approach using polyvinyl alcohol as a morphology regulator. In the LVO/C Hs, the local LVO@C nanoparticle constituents render high activity, and the integral honeycomb-like architecture facilitates electron transfer and promotes a synergistic effect between the constituents. The lithiation-driven electrochemical reconstruction in cycling ensures the integrity of the honeycomb structure, and at the same time, the LVO nanoparticles are refined to 3–5 nm, producing abundant nanopores. The self-reconfigured structures with ultrasmall nanoparticles and large void space effectively shorten the ion diffusion pathway. The above structural characteristics trigger a continuous high capacitive charge storage, giving rise to unprecedented high-rate performance. The LVO/C Hs electrode delivered a discharge capacity recovery of 590.0 mA h g
−1
at 0.5 A g
−1
after 6 periodic rate performance tests from 0.5 to 10 A g
−1
over 430 cycles. When cycling at a high discharge current of 6 A g
−1
, the LVO/C Hs electrode could maintain stable cycling over 14 000 cycles with a high discharge capacity of 324.5 mA h g
−1
. The lifespan of the LVO/C Hs is the longest among all the reported LVO-based electrodes, demonstrating great potential in long-life and high-rate applications such as electric vehicles and power stations.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA01817B</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (23), p.12164-12175</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76B-90c405ea6935e7cd465b3d738a4609c287a9cef0f66d00d7ca5ca5f3a5e8651a3</citedby><cites>FETCH-LOGICAL-c76B-90c405ea6935e7cd465b3d738a4609c287a9cef0f66d00d7ca5ca5f3a5e8651a3</cites><orcidid>0000-0001-8264-6064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bai, Xiaomeng</creatorcontrib><creatorcontrib>Li, Daobo</creatorcontrib><creatorcontrib>Zhang, Dongmei</creatorcontrib><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Pei, Cunyuan</creatorcontrib><creatorcontrib>Sun, Bing</creatorcontrib><creatorcontrib>Ni, Shibing</creatorcontrib><title>Boosting high-rate lithium storage in Li 3 VO 4 via a honeycomb structure design and electrochemical reconstruction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>While the intrinsic safety and capacity merits of Li
3
VO
4
endow it with great promise in LIBs, the moderate lifespan under a high rate hinders its practical application. Herein, we demonstrate for the first time, the boosting of an unprecedented high-rate performance of the Li
3
VO
4
-based electrode
via
a novel honeycomb architecture design and its electrochemical reconstruction upon cycling. Li
3
VO
4
/C honeycombs (LVO/C Hs) consisting of primary carbon-coated Li
3
VO
4
nanoparticles have been constructed by a self-assembly strategy, through a developed electrospraying approach using polyvinyl alcohol as a morphology regulator. In the LVO/C Hs, the local LVO@C nanoparticle constituents render high activity, and the integral honeycomb-like architecture facilitates electron transfer and promotes a synergistic effect between the constituents. The lithiation-driven electrochemical reconstruction in cycling ensures the integrity of the honeycomb structure, and at the same time, the LVO nanoparticles are refined to 3–5 nm, producing abundant nanopores. The self-reconfigured structures with ultrasmall nanoparticles and large void space effectively shorten the ion diffusion pathway. The above structural characteristics trigger a continuous high capacitive charge storage, giving rise to unprecedented high-rate performance. The LVO/C Hs electrode delivered a discharge capacity recovery of 590.0 mA h g
−1
at 0.5 A g
−1
after 6 periodic rate performance tests from 0.5 to 10 A g
−1
over 430 cycles. When cycling at a high discharge current of 6 A g
−1
, the LVO/C Hs electrode could maintain stable cycling over 14 000 cycles with a high discharge capacity of 324.5 mA h g
−1
. The lifespan of the LVO/C Hs is the longest among all the reported LVO-based electrodes, demonstrating great potential in long-life and high-rate applications such as electric vehicles and power stations.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM1qwzAQhEVpoSHNpU-w54LbdWRJ1jFJfyGQS-jVKPLaVrGlItmFvH1TUtphYObwMYdh7DbH-xy5fnjk-xXmZa7WF2y2RIGZKrS8_Otlec0WKX3gSSWi1HrG0jqENDrfQufaLotmJOjd2LlpgDSGaFoC52HrgMP7Dgr4cgYMdMHT0YbhcILiZMcpEtSUXOvB-BqoJzvGYDsanDU9RLLBn0kX_A27akyfaPGbc7Z_ftpvXrPt7uVts9pmVsl1ptEWKMhIzQUpWxdSHHiteGkKidouS2W0pQYbKWvEWlkjTm64EVRKkRs-Z3fnWRtDSpGa6jO6wcRjlWP1c1j1fxj_BqL4Xto</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Bai, Xiaomeng</creator><creator>Li, Daobo</creator><creator>Zhang, Dongmei</creator><creator>Yang, Song</creator><creator>Pei, Cunyuan</creator><creator>Sun, Bing</creator><creator>Ni, Shibing</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8264-6064</orcidid></search><sort><creationdate>20230613</creationdate><title>Boosting high-rate lithium storage in Li 3 VO 4 via a honeycomb structure design and electrochemical reconstruction</title><author>Bai, Xiaomeng ; Li, Daobo ; Zhang, Dongmei ; Yang, Song ; Pei, Cunyuan ; Sun, Bing ; Ni, Shibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76B-90c405ea6935e7cd465b3d738a4609c287a9cef0f66d00d7ca5ca5f3a5e8651a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Xiaomeng</creatorcontrib><creatorcontrib>Li, Daobo</creatorcontrib><creatorcontrib>Zhang, Dongmei</creatorcontrib><creatorcontrib>Yang, Song</creatorcontrib><creatorcontrib>Pei, Cunyuan</creatorcontrib><creatorcontrib>Sun, Bing</creatorcontrib><creatorcontrib>Ni, Shibing</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Xiaomeng</au><au>Li, Daobo</au><au>Zhang, Dongmei</au><au>Yang, Song</au><au>Pei, Cunyuan</au><au>Sun, Bing</au><au>Ni, Shibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting high-rate lithium storage in Li 3 VO 4 via a honeycomb structure design and electrochemical reconstruction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-13</date><risdate>2023</risdate><volume>11</volume><issue>23</issue><spage>12164</spage><epage>12175</epage><pages>12164-12175</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>While the intrinsic safety and capacity merits of Li
3
VO
4
endow it with great promise in LIBs, the moderate lifespan under a high rate hinders its practical application. Herein, we demonstrate for the first time, the boosting of an unprecedented high-rate performance of the Li
3
VO
4
-based electrode
via
a novel honeycomb architecture design and its electrochemical reconstruction upon cycling. Li
3
VO
4
/C honeycombs (LVO/C Hs) consisting of primary carbon-coated Li
3
VO
4
nanoparticles have been constructed by a self-assembly strategy, through a developed electrospraying approach using polyvinyl alcohol as a morphology regulator. In the LVO/C Hs, the local LVO@C nanoparticle constituents render high activity, and the integral honeycomb-like architecture facilitates electron transfer and promotes a synergistic effect between the constituents. The lithiation-driven electrochemical reconstruction in cycling ensures the integrity of the honeycomb structure, and at the same time, the LVO nanoparticles are refined to 3–5 nm, producing abundant nanopores. The self-reconfigured structures with ultrasmall nanoparticles and large void space effectively shorten the ion diffusion pathway. The above structural characteristics trigger a continuous high capacitive charge storage, giving rise to unprecedented high-rate performance. The LVO/C Hs electrode delivered a discharge capacity recovery of 590.0 mA h g
−1
at 0.5 A g
−1
after 6 periodic rate performance tests from 0.5 to 10 A g
−1
over 430 cycles. When cycling at a high discharge current of 6 A g
−1
, the LVO/C Hs electrode could maintain stable cycling over 14 000 cycles with a high discharge capacity of 324.5 mA h g
−1
. The lifespan of the LVO/C Hs is the longest among all the reported LVO-based electrodes, demonstrating great potential in long-life and high-rate applications such as electric vehicles and power stations.</abstract><doi>10.1039/D3TA01817B</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8264-6064</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (23), p.12164-12175 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3TA01817B |
source | Royal Society Of Chemistry Journals 2008- |
title | Boosting high-rate lithium storage in Li 3 VO 4 via a honeycomb structure design and electrochemical reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20high-rate%20lithium%20storage%20in%20Li%203%20VO%204%20via%20a%20honeycomb%20structure%20design%20and%20electrochemical%20reconstruction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Bai,%20Xiaomeng&rft.date=2023-06-13&rft.volume=11&rft.issue=23&rft.spage=12164&rft.epage=12175&rft.pages=12164-12175&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA01817B&rft_dat=%3Ccrossref%3E10_1039_D3TA01817B%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |