Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries
Various SnS 2 -based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS 2 materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13320-13330 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13330 |
---|---|
container_issue | 25 |
container_start_page | 13320 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Jang, Jeong-Hun Lee, Minseop Park, Soohyeon Oh, Jae-Min Park, Jin Kuen Paek, Seung-Min |
description | Various SnS
2
-based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS
2
materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In this study, we introduced a new strategy of hybridization of SnS
2
and covalent organic nanosheets (CONs) that have high flexibility, high stability in organic electrolytes, and many interfacial surface sites. The CON provided reaction sites for the growth of SnS
2
nanoparticles due to the strong electrostatic interaction between the sulfur heteroatoms of CONs and Sn
4+
, resulting in the formation of ultrathin SnS
2
nanoplates on the CON nanosheets. The resulting SnS
2
-based CON showed outstanding cyclic stability over 5600 charge/discharge cycles at a current density of 1.0 A g
−1
in the LIB system. In particular, the prominent interfacial surface sites of CONs provided large accessible areas for lithium ions, showing stable successive cycling performances with improved electrical and ionic conductivities. |
doi_str_mv | 10.1039/D3TA01537H |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA01537H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA01537H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76H-22599be68bdfe2cf230887ffd0f211d37f98af2c324c317c20c27ad843de62923</originalsourceid><addsrcrecordid>eNpFkM1KAzEYRYMoWGo3PsG3FqLJl3aSLEv9qVBw0e6HTH7ayDSRZBT69o4o9W7u3dyzOITccnbPmdAPj2K3ZHwh5PqCTJAtGJVz3Vyet1LXZFbrOxujGGu0npDDJqc9HXw5gj3ZPqY91MF0sY_DCXIAA9u0BQTameod2Pxlep8GyGVvUrSQTMr14P0A43AeQi4wfg_x80hjTtCZYYRHX2_IVTB99bO_npLd89Nutaabt5fX1XJDrWzWFHGhdecb1bng0QYUTCkZgmMBOXdCBq1MQCtwbgWXFplFaZyaC-cb1Cim5O4Xa0uutfjQfpR4NOXUctb-WGr_LYlv-phaXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Jang, Jeong-Hun ; Lee, Minseop ; Park, Soohyeon ; Oh, Jae-Min ; Park, Jin Kuen ; Paek, Seung-Min</creator><creatorcontrib>Jang, Jeong-Hun ; Lee, Minseop ; Park, Soohyeon ; Oh, Jae-Min ; Park, Jin Kuen ; Paek, Seung-Min</creatorcontrib><description>Various SnS
2
-based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS
2
materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In this study, we introduced a new strategy of hybridization of SnS
2
and covalent organic nanosheets (CONs) that have high flexibility, high stability in organic electrolytes, and many interfacial surface sites. The CON provided reaction sites for the growth of SnS
2
nanoparticles due to the strong electrostatic interaction between the sulfur heteroatoms of CONs and Sn
4+
, resulting in the formation of ultrathin SnS
2
nanoplates on the CON nanosheets. The resulting SnS
2
-based CON showed outstanding cyclic stability over 5600 charge/discharge cycles at a current density of 1.0 A g
−1
in the LIB system. In particular, the prominent interfacial surface sites of CONs provided large accessible areas for lithium ions, showing stable successive cycling performances with improved electrical and ionic conductivities.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA01537H</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13320-13330</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76H-22599be68bdfe2cf230887ffd0f211d37f98af2c324c317c20c27ad843de62923</citedby><cites>FETCH-LOGICAL-c76H-22599be68bdfe2cf230887ffd0f211d37f98af2c324c317c20c27ad843de62923</cites><orcidid>0000-0003-1638-9957 ; 0000-0002-0386-5160 ; 0000-0003-4923-2809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Jang, Jeong-Hun</creatorcontrib><creatorcontrib>Lee, Minseop</creatorcontrib><creatorcontrib>Park, Soohyeon</creatorcontrib><creatorcontrib>Oh, Jae-Min</creatorcontrib><creatorcontrib>Park, Jin Kuen</creatorcontrib><creatorcontrib>Paek, Seung-Min</creatorcontrib><title>Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Various SnS
2
-based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS
2
materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In this study, we introduced a new strategy of hybridization of SnS
2
and covalent organic nanosheets (CONs) that have high flexibility, high stability in organic electrolytes, and many interfacial surface sites. The CON provided reaction sites for the growth of SnS
2
nanoparticles due to the strong electrostatic interaction between the sulfur heteroatoms of CONs and Sn
4+
, resulting in the formation of ultrathin SnS
2
nanoplates on the CON nanosheets. The resulting SnS
2
-based CON showed outstanding cyclic stability over 5600 charge/discharge cycles at a current density of 1.0 A g
−1
in the LIB system. In particular, the prominent interfacial surface sites of CONs provided large accessible areas for lithium ions, showing stable successive cycling performances with improved electrical and ionic conductivities.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEYRYMoWGo3PsG3FqLJl3aSLEv9qVBw0e6HTH7ayDSRZBT69o4o9W7u3dyzOITccnbPmdAPj2K3ZHwh5PqCTJAtGJVz3Vyet1LXZFbrOxujGGu0npDDJqc9HXw5gj3ZPqY91MF0sY_DCXIAA9u0BQTameod2Pxlep8GyGVvUrSQTMr14P0A43AeQi4wfg_x80hjTtCZYYRHX2_IVTB99bO_npLd89Nutaabt5fX1XJDrWzWFHGhdecb1bng0QYUTCkZgmMBOXdCBq1MQCtwbgWXFplFaZyaC-cb1Cim5O4Xa0uutfjQfpR4NOXUctb-WGr_LYlv-phaXg</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Jang, Jeong-Hun</creator><creator>Lee, Minseop</creator><creator>Park, Soohyeon</creator><creator>Oh, Jae-Min</creator><creator>Park, Jin Kuen</creator><creator>Paek, Seung-Min</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1638-9957</orcidid><orcidid>https://orcid.org/0000-0002-0386-5160</orcidid><orcidid>https://orcid.org/0000-0003-4923-2809</orcidid></search><sort><creationdate>20230627</creationdate><title>Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries</title><author>Jang, Jeong-Hun ; Lee, Minseop ; Park, Soohyeon ; Oh, Jae-Min ; Park, Jin Kuen ; Paek, Seung-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76H-22599be68bdfe2cf230887ffd0f211d37f98af2c324c317c20c27ad843de62923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Jeong-Hun</creatorcontrib><creatorcontrib>Lee, Minseop</creatorcontrib><creatorcontrib>Park, Soohyeon</creatorcontrib><creatorcontrib>Oh, Jae-Min</creatorcontrib><creatorcontrib>Park, Jin Kuen</creatorcontrib><creatorcontrib>Paek, Seung-Min</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Jeong-Hun</au><au>Lee, Minseop</au><au>Park, Soohyeon</au><au>Oh, Jae-Min</au><au>Park, Jin Kuen</au><au>Paek, Seung-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-27</date><risdate>2023</risdate><volume>11</volume><issue>25</issue><spage>13320</spage><epage>13330</epage><pages>13320-13330</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Various SnS
2
-based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS
2
materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In this study, we introduced a new strategy of hybridization of SnS
2
and covalent organic nanosheets (CONs) that have high flexibility, high stability in organic electrolytes, and many interfacial surface sites. The CON provided reaction sites for the growth of SnS
2
nanoparticles due to the strong electrostatic interaction between the sulfur heteroatoms of CONs and Sn
4+
, resulting in the formation of ultrathin SnS
2
nanoplates on the CON nanosheets. The resulting SnS
2
-based CON showed outstanding cyclic stability over 5600 charge/discharge cycles at a current density of 1.0 A g
−1
in the LIB system. In particular, the prominent interfacial surface sites of CONs provided large accessible areas for lithium ions, showing stable successive cycling performances with improved electrical and ionic conductivities.</abstract><doi>10.1039/D3TA01537H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1638-9957</orcidid><orcidid>https://orcid.org/0000-0002-0386-5160</orcidid><orcidid>https://orcid.org/0000-0003-4923-2809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13320-13330 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3TA01537H |
source | Royal Society Of Chemistry Journals |
title | Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20cycling%20stability%20of%20a%20SnS%202%20-based%20covalent%20organic%20nanosheet%20anode%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Jang,%20Jeong-Hun&rft.date=2023-06-27&rft.volume=11&rft.issue=25&rft.spage=13320&rft.epage=13330&rft.pages=13320-13330&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA01537H&rft_dat=%3Ccrossref%3E10_1039_D3TA01537H%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |