Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries

Various SnS 2 -based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS 2 materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13320-13330
Hauptverfasser: Jang, Jeong-Hun, Lee, Minseop, Park, Soohyeon, Oh, Jae-Min, Park, Jin Kuen, Paek, Seung-Min
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13330
container_issue 25
container_start_page 13320
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Jang, Jeong-Hun
Lee, Minseop
Park, Soohyeon
Oh, Jae-Min
Park, Jin Kuen
Paek, Seung-Min
description Various SnS 2 -based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS 2 materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In this study, we introduced a new strategy of hybridization of SnS 2 and covalent organic nanosheets (CONs) that have high flexibility, high stability in organic electrolytes, and many interfacial surface sites. The CON provided reaction sites for the growth of SnS 2 nanoparticles due to the strong electrostatic interaction between the sulfur heteroatoms of CONs and Sn 4+ , resulting in the formation of ultrathin SnS 2 nanoplates on the CON nanosheets. The resulting SnS 2 -based CON showed outstanding cyclic stability over 5600 charge/discharge cycles at a current density of 1.0 A g −1 in the LIB system. In particular, the prominent interfacial surface sites of CONs provided large accessible areas for lithium ions, showing stable successive cycling performances with improved electrical and ionic conductivities.
doi_str_mv 10.1039/D3TA01537H
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA01537H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3TA01537H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76H-22599be68bdfe2cf230887ffd0f211d37f98af2c324c317c20c27ad843de62923</originalsourceid><addsrcrecordid>eNpFkM1KAzEYRYMoWGo3PsG3FqLJl3aSLEv9qVBw0e6HTH7ayDSRZBT69o4o9W7u3dyzOITccnbPmdAPj2K3ZHwh5PqCTJAtGJVz3Vyet1LXZFbrOxujGGu0npDDJqc9HXw5gj3ZPqY91MF0sY_DCXIAA9u0BQTameod2Pxlep8GyGVvUrSQTMr14P0A43AeQi4wfg_x80hjTtCZYYRHX2_IVTB99bO_npLd89Nutaabt5fX1XJDrWzWFHGhdecb1bng0QYUTCkZgmMBOXdCBq1MQCtwbgWXFplFaZyaC-cb1Cim5O4Xa0uutfjQfpR4NOXUctb-WGr_LYlv-phaXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Jang, Jeong-Hun ; Lee, Minseop ; Park, Soohyeon ; Oh, Jae-Min ; Park, Jin Kuen ; Paek, Seung-Min</creator><creatorcontrib>Jang, Jeong-Hun ; Lee, Minseop ; Park, Soohyeon ; Oh, Jae-Min ; Park, Jin Kuen ; Paek, Seung-Min</creatorcontrib><description>Various SnS 2 -based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS 2 materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In this study, we introduced a new strategy of hybridization of SnS 2 and covalent organic nanosheets (CONs) that have high flexibility, high stability in organic electrolytes, and many interfacial surface sites. The CON provided reaction sites for the growth of SnS 2 nanoparticles due to the strong electrostatic interaction between the sulfur heteroatoms of CONs and Sn 4+ , resulting in the formation of ultrathin SnS 2 nanoplates on the CON nanosheets. The resulting SnS 2 -based CON showed outstanding cyclic stability over 5600 charge/discharge cycles at a current density of 1.0 A g −1 in the LIB system. In particular, the prominent interfacial surface sites of CONs provided large accessible areas for lithium ions, showing stable successive cycling performances with improved electrical and ionic conductivities.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA01537H</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13320-13330</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76H-22599be68bdfe2cf230887ffd0f211d37f98af2c324c317c20c27ad843de62923</citedby><cites>FETCH-LOGICAL-c76H-22599be68bdfe2cf230887ffd0f211d37f98af2c324c317c20c27ad843de62923</cites><orcidid>0000-0003-1638-9957 ; 0000-0002-0386-5160 ; 0000-0003-4923-2809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Jang, Jeong-Hun</creatorcontrib><creatorcontrib>Lee, Minseop</creatorcontrib><creatorcontrib>Park, Soohyeon</creatorcontrib><creatorcontrib>Oh, Jae-Min</creatorcontrib><creatorcontrib>Park, Jin Kuen</creatorcontrib><creatorcontrib>Paek, Seung-Min</creatorcontrib><title>Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Various SnS 2 -based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS 2 materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In this study, we introduced a new strategy of hybridization of SnS 2 and covalent organic nanosheets (CONs) that have high flexibility, high stability in organic electrolytes, and many interfacial surface sites. The CON provided reaction sites for the growth of SnS 2 nanoparticles due to the strong electrostatic interaction between the sulfur heteroatoms of CONs and Sn 4+ , resulting in the formation of ultrathin SnS 2 nanoplates on the CON nanosheets. The resulting SnS 2 -based CON showed outstanding cyclic stability over 5600 charge/discharge cycles at a current density of 1.0 A g −1 in the LIB system. In particular, the prominent interfacial surface sites of CONs provided large accessible areas for lithium ions, showing stable successive cycling performances with improved electrical and ionic conductivities.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEYRYMoWGo3PsG3FqLJl3aSLEv9qVBw0e6HTH7ayDSRZBT69o4o9W7u3dyzOITccnbPmdAPj2K3ZHwh5PqCTJAtGJVz3Vyet1LXZFbrOxujGGu0npDDJqc9HXw5gj3ZPqY91MF0sY_DCXIAA9u0BQTameod2Pxlep8GyGVvUrSQTMr14P0A43AeQi4wfg_x80hjTtCZYYRHX2_IVTB99bO_npLd89Nutaabt5fX1XJDrWzWFHGhdecb1bng0QYUTCkZgmMBOXdCBq1MQCtwbgWXFplFaZyaC-cb1Cim5O4Xa0uutfjQfpR4NOXUctb-WGr_LYlv-phaXg</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Jang, Jeong-Hun</creator><creator>Lee, Minseop</creator><creator>Park, Soohyeon</creator><creator>Oh, Jae-Min</creator><creator>Park, Jin Kuen</creator><creator>Paek, Seung-Min</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1638-9957</orcidid><orcidid>https://orcid.org/0000-0002-0386-5160</orcidid><orcidid>https://orcid.org/0000-0003-4923-2809</orcidid></search><sort><creationdate>20230627</creationdate><title>Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries</title><author>Jang, Jeong-Hun ; Lee, Minseop ; Park, Soohyeon ; Oh, Jae-Min ; Park, Jin Kuen ; Paek, Seung-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76H-22599be68bdfe2cf230887ffd0f211d37f98af2c324c317c20c27ad843de62923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Jeong-Hun</creatorcontrib><creatorcontrib>Lee, Minseop</creatorcontrib><creatorcontrib>Park, Soohyeon</creatorcontrib><creatorcontrib>Oh, Jae-Min</creatorcontrib><creatorcontrib>Park, Jin Kuen</creatorcontrib><creatorcontrib>Paek, Seung-Min</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Jeong-Hun</au><au>Lee, Minseop</au><au>Park, Soohyeon</au><au>Oh, Jae-Min</au><au>Park, Jin Kuen</au><au>Paek, Seung-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-27</date><risdate>2023</risdate><volume>11</volume><issue>25</issue><spage>13320</spage><epage>13330</epage><pages>13320-13330</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Various SnS 2 -based carbonaceous anodes for lithium ion battery (LIB) systems have been developed to enhance the electrochemical performance of SnS 2 materials and to overcome the disadvantages of transition metal sulfides with less interfacial surface sites and low electrochemical conductivity. In this study, we introduced a new strategy of hybridization of SnS 2 and covalent organic nanosheets (CONs) that have high flexibility, high stability in organic electrolytes, and many interfacial surface sites. The CON provided reaction sites for the growth of SnS 2 nanoparticles due to the strong electrostatic interaction between the sulfur heteroatoms of CONs and Sn 4+ , resulting in the formation of ultrathin SnS 2 nanoplates on the CON nanosheets. The resulting SnS 2 -based CON showed outstanding cyclic stability over 5600 charge/discharge cycles at a current density of 1.0 A g −1 in the LIB system. In particular, the prominent interfacial surface sites of CONs provided large accessible areas for lithium ions, showing stable successive cycling performances with improved electrical and ionic conductivities.</abstract><doi>10.1039/D3TA01537H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1638-9957</orcidid><orcidid>https://orcid.org/0000-0002-0386-5160</orcidid><orcidid>https://orcid.org/0000-0003-4923-2809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13320-13330
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D3TA01537H
source Royal Society Of Chemistry Journals
title Long-term cycling stability of a SnS 2 -based covalent organic nanosheet anode for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20cycling%20stability%20of%20a%20SnS%202%20-based%20covalent%20organic%20nanosheet%20anode%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Jang,%20Jeong-Hun&rft.date=2023-06-27&rft.volume=11&rft.issue=25&rft.spage=13320&rft.epage=13330&rft.pages=13320-13330&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA01537H&rft_dat=%3Ccrossref%3E10_1039_D3TA01537H%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true