Fuel cell electrode degradation followed by identical location transmission electron microscopy

Identical location transmission electron microscopy (IL-TEM) is a powerful technique that has previously been used to study degradation of catalyst materials for proton exchange membrane fuel cells (PEMFCs) in half-cell environments. Here, we demonstrate that IL-TEM can be used to follow degradation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-10, Vol.11 (39), p.2129-2135
Hauptverfasser: Shokhen, Victor, Strandberg, Linnéa, Skoglundh, Magnus, Wickman, Björn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2135
container_issue 39
container_start_page 2129
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Shokhen, Victor
Strandberg, Linnéa
Skoglundh, Magnus
Wickman, Björn
description Identical location transmission electron microscopy (IL-TEM) is a powerful technique that has previously been used to study degradation of catalyst materials for proton exchange membrane fuel cells (PEMFCs) in half-cell environments. Here, we demonstrate that IL-TEM can be used to follow degradation at the top of the catalytic Pt/C layer in a real PEMFC on the atomic scale under operation. We find that during an accelerated stress test (AST), mimicking normal operation, Pt nanoparticles grow mainly by Ostwald ripening, while the carbon support is stable. Under AST mimicking start-up/shutdown conditions, the carbon support degrades mainly by loss of volume and collapse, which forces the Pt nanoparticles closer, promoting additional particle growth. The observed degradation correlates with the measured decrease in electrochemical performance for the respective AST. The results show the feasibility of performing IL-TEM imaging in PEMFCs under real-operating conditions, opening up the possibility for similar studies in other fully operational systems. Identical location transmission electron microscopy has been used to follow degradation at the top of the catalytic Pt/C layer in a real proton exchange membrane fuel cell on the atomic scale under operation.
doi_str_mv 10.1039/d3ta01303k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3TA01303K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874913410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ed8377ca2594eb267a80d5a17e3c5332ced364e95775c76c015a8983c5132a073</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGov3oWAN2E12dlsssdSrYoFL_Uc0mQqW9NNTbbI_nu3bqlzmRne483wEXLN2T1nUD04aA3jwODrjIxyJlgmi6o8P81KXZJJShvWl2KsrKoR0fM9emrRe4oebRuDQ-rwMxpn2jo0dB28Dz_o6KqjtcOmra3x1Ac7yG00TdrWKR2WY0JDt7WNIdmw667Ixdr4hJNjH5OP-dNy9pIt3p9fZ9NFZoHLNkOnQEprclEVuMpLaRRzwnCJYAVAbtFBWWAlpBRWlpZxYVSlepFDbpiEMbkdcncxfO8xtXoT9rHpT-pc9Rg4FD2jMbkbXIf3UsS13sV6a2KnOdMHhvoRltM_hm-9-WYwx2RPvn_G8Avadm5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874913410</pqid></control><display><type>article</type><title>Fuel cell electrode degradation followed by identical location transmission electron microscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shokhen, Victor ; Strandberg, Linnéa ; Skoglundh, Magnus ; Wickman, Björn</creator><creatorcontrib>Shokhen, Victor ; Strandberg, Linnéa ; Skoglundh, Magnus ; Wickman, Björn</creatorcontrib><description>Identical location transmission electron microscopy (IL-TEM) is a powerful technique that has previously been used to study degradation of catalyst materials for proton exchange membrane fuel cells (PEMFCs) in half-cell environments. Here, we demonstrate that IL-TEM can be used to follow degradation at the top of the catalytic Pt/C layer in a real PEMFC on the atomic scale under operation. We find that during an accelerated stress test (AST), mimicking normal operation, Pt nanoparticles grow mainly by Ostwald ripening, while the carbon support is stable. Under AST mimicking start-up/shutdown conditions, the carbon support degrades mainly by loss of volume and collapse, which forces the Pt nanoparticles closer, promoting additional particle growth. The observed degradation correlates with the measured decrease in electrochemical performance for the respective AST. The results show the feasibility of performing IL-TEM imaging in PEMFCs under real-operating conditions, opening up the possibility for similar studies in other fully operational systems. Identical location transmission electron microscopy has been used to follow degradation at the top of the catalytic Pt/C layer in a real proton exchange membrane fuel cell on the atomic scale under operation.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta01303k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accelerated tests ; Carbon ; Catalysts ; Degradation ; Electrochemical analysis ; Electrochemistry ; Fuel cells ; Fuel technology ; Mimicry ; Nanoparticles ; Ostwald ripening ; Proton exchange membrane fuel cells ; Transmission electron microscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-10, Vol.11 (39), p.2129-2135</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ed8377ca2594eb267a80d5a17e3c5332ced364e95775c76c015a8983c5132a073</citedby><cites>FETCH-LOGICAL-c317t-ed8377ca2594eb267a80d5a17e3c5332ced364e95775c76c015a8983c5132a073</cites><orcidid>0000-0002-9990-2041 ; 0000-0001-7946-7137 ; 0000-0001-7119-9529 ; 0000-0002-0499-4132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shokhen, Victor</creatorcontrib><creatorcontrib>Strandberg, Linnéa</creatorcontrib><creatorcontrib>Skoglundh, Magnus</creatorcontrib><creatorcontrib>Wickman, Björn</creatorcontrib><title>Fuel cell electrode degradation followed by identical location transmission electron microscopy</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Identical location transmission electron microscopy (IL-TEM) is a powerful technique that has previously been used to study degradation of catalyst materials for proton exchange membrane fuel cells (PEMFCs) in half-cell environments. Here, we demonstrate that IL-TEM can be used to follow degradation at the top of the catalytic Pt/C layer in a real PEMFC on the atomic scale under operation. We find that during an accelerated stress test (AST), mimicking normal operation, Pt nanoparticles grow mainly by Ostwald ripening, while the carbon support is stable. Under AST mimicking start-up/shutdown conditions, the carbon support degrades mainly by loss of volume and collapse, which forces the Pt nanoparticles closer, promoting additional particle growth. The observed degradation correlates with the measured decrease in electrochemical performance for the respective AST. The results show the feasibility of performing IL-TEM imaging in PEMFCs under real-operating conditions, opening up the possibility for similar studies in other fully operational systems. Identical location transmission electron microscopy has been used to follow degradation at the top of the catalytic Pt/C layer in a real proton exchange membrane fuel cell on the atomic scale under operation.</description><subject>Accelerated tests</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Degradation</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Mimicry</subject><subject>Nanoparticles</subject><subject>Ostwald ripening</subject><subject>Proton exchange membrane fuel cells</subject><subject>Transmission electron microscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGov3oWAN2E12dlsssdSrYoFL_Uc0mQqW9NNTbbI_nu3bqlzmRne483wEXLN2T1nUD04aA3jwODrjIxyJlgmi6o8P81KXZJJShvWl2KsrKoR0fM9emrRe4oebRuDQ-rwMxpn2jo0dB28Dz_o6KqjtcOmra3x1Ac7yG00TdrWKR2WY0JDt7WNIdmw667Ixdr4hJNjH5OP-dNy9pIt3p9fZ9NFZoHLNkOnQEprclEVuMpLaRRzwnCJYAVAbtFBWWAlpBRWlpZxYVSlepFDbpiEMbkdcncxfO8xtXoT9rHpT-pc9Rg4FD2jMbkbXIf3UsS13sV6a2KnOdMHhvoRltM_hm-9-WYwx2RPvn_G8Avadm5w</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Shokhen, Victor</creator><creator>Strandberg, Linnéa</creator><creator>Skoglundh, Magnus</creator><creator>Wickman, Björn</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9990-2041</orcidid><orcidid>https://orcid.org/0000-0001-7946-7137</orcidid><orcidid>https://orcid.org/0000-0001-7119-9529</orcidid><orcidid>https://orcid.org/0000-0002-0499-4132</orcidid></search><sort><creationdate>20231010</creationdate><title>Fuel cell electrode degradation followed by identical location transmission electron microscopy</title><author>Shokhen, Victor ; Strandberg, Linnéa ; Skoglundh, Magnus ; Wickman, Björn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ed8377ca2594eb267a80d5a17e3c5332ced364e95775c76c015a8983c5132a073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerated tests</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Degradation</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Mimicry</topic><topic>Nanoparticles</topic><topic>Ostwald ripening</topic><topic>Proton exchange membrane fuel cells</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokhen, Victor</creatorcontrib><creatorcontrib>Strandberg, Linnéa</creatorcontrib><creatorcontrib>Skoglundh, Magnus</creatorcontrib><creatorcontrib>Wickman, Björn</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokhen, Victor</au><au>Strandberg, Linnéa</au><au>Skoglundh, Magnus</au><au>Wickman, Björn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel cell electrode degradation followed by identical location transmission electron microscopy</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>11</volume><issue>39</issue><spage>2129</spage><epage>2135</epage><pages>2129-2135</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Identical location transmission electron microscopy (IL-TEM) is a powerful technique that has previously been used to study degradation of catalyst materials for proton exchange membrane fuel cells (PEMFCs) in half-cell environments. Here, we demonstrate that IL-TEM can be used to follow degradation at the top of the catalytic Pt/C layer in a real PEMFC on the atomic scale under operation. We find that during an accelerated stress test (AST), mimicking normal operation, Pt nanoparticles grow mainly by Ostwald ripening, while the carbon support is stable. Under AST mimicking start-up/shutdown conditions, the carbon support degrades mainly by loss of volume and collapse, which forces the Pt nanoparticles closer, promoting additional particle growth. The observed degradation correlates with the measured decrease in electrochemical performance for the respective AST. The results show the feasibility of performing IL-TEM imaging in PEMFCs under real-operating conditions, opening up the possibility for similar studies in other fully operational systems. Identical location transmission electron microscopy has been used to follow degradation at the top of the catalytic Pt/C layer in a real proton exchange membrane fuel cell on the atomic scale under operation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta01303k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9990-2041</orcidid><orcidid>https://orcid.org/0000-0001-7946-7137</orcidid><orcidid>https://orcid.org/0000-0001-7119-9529</orcidid><orcidid>https://orcid.org/0000-0002-0499-4132</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-10, Vol.11 (39), p.2129-2135
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D3TA01303K
source Royal Society Of Chemistry Journals 2008-
subjects Accelerated tests
Carbon
Catalysts
Degradation
Electrochemical analysis
Electrochemistry
Fuel cells
Fuel technology
Mimicry
Nanoparticles
Ostwald ripening
Proton exchange membrane fuel cells
Transmission electron microscopy
title Fuel cell electrode degradation followed by identical location transmission electron microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%20cell%20electrode%20degradation%20followed%20by%20identical%20location%20transmission%20electron%20microscopy&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shokhen,%20Victor&rft.date=2023-10-10&rft.volume=11&rft.issue=39&rft.spage=2129&rft.epage=2135&rft.pages=2129-2135&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta01303k&rft_dat=%3Cproquest_cross%3E2874913410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874913410&rft_id=info:pmid/&rfr_iscdi=true