Dehydration of biological membranes in a non-condensing environment

The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2023-12, Vol.19 (47), p.9173-9178
Hauptverfasser: Hernández-Galván, G, Mercado-Uribe, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9178
container_issue 47
container_start_page 9173
container_title Soft matter
container_volume 19
creator Hernández-Galván, G
Mercado-Uribe, H
description The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of Escherichia coli through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour. The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it.
doi_str_mv 10.1039/d3sm01181j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3SM01181J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892947896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f26bca3e51892094fcd11f816d49f44c1c657085709030046c30394281719b673</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqxbuw4EWE1cwmzSZHaesXFQ8qeFuy2aSm7CY12Qr996ZWKngYZg7PDMOL0CngK8BEXDckdhiAw2IPDaCkNGec8v3dTN4P0VGMC4wJp8AGaDzRH-smyN56l3mT1da3fm6VbLNOd3WQTsfMukxmzrtceddoF62bZ9p92eBdp11_jA6MbKM--e1D9HY7fR3f57Pnu4fxzSxXBIs-NwWrlSR6BFwUWFCjGgDDgTVUGEoVKDYqMU8lMMGYsrRGBC04lCBqVpIhutjeXQb_udKxrzoblW7b9KRfxapIdwUtuWCJnv-jC78KLn23UZyQApc8qcutUsHHGLSplsF2MqwrwNUmz2pCXp5-8nxM-GyLQ1Q795c3-QZ8fm_W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898332078</pqid></control><display><type>article</type><title>Dehydration of biological membranes in a non-condensing environment</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hernández-Galván, G ; Mercado-Uribe, H</creator><creatorcontrib>Hernández-Galván, G ; Mercado-Uribe, H</creatorcontrib><description>The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of Escherichia coli through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour. The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d3sm01181j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Air-water interface ; Biological membranes ; Bound water ; Cell membranes ; Dehydration ; E coli ; Evaporation ; Internal pressure ; Lipids ; Liposomes ; Osmotic stress ; Thermogravimetry</subject><ispartof>Soft matter, 2023-12, Vol.19 (47), p.9173-9178</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-f26bca3e51892094fcd11f816d49f44c1c657085709030046c30394281719b673</cites><orcidid>0000-0002-1123-7375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hernández-Galván, G</creatorcontrib><creatorcontrib>Mercado-Uribe, H</creatorcontrib><title>Dehydration of biological membranes in a non-condensing environment</title><title>Soft matter</title><description>The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of Escherichia coli through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour. The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it.</description><subject>Air-water interface</subject><subject>Biological membranes</subject><subject>Bound water</subject><subject>Cell membranes</subject><subject>Dehydration</subject><subject>E coli</subject><subject>Evaporation</subject><subject>Internal pressure</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Osmotic stress</subject><subject>Thermogravimetry</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgCtbqxbuw4EWE1cwmzSZHaesXFQ8qeFuy2aSm7CY12Qr996ZWKngYZg7PDMOL0CngK8BEXDckdhiAw2IPDaCkNGec8v3dTN4P0VGMC4wJp8AGaDzRH-smyN56l3mT1da3fm6VbLNOd3WQTsfMukxmzrtceddoF62bZ9p92eBdp11_jA6MbKM--e1D9HY7fR3f57Pnu4fxzSxXBIs-NwWrlSR6BFwUWFCjGgDDgTVUGEoVKDYqMU8lMMGYsrRGBC04lCBqVpIhutjeXQb_udKxrzoblW7b9KRfxapIdwUtuWCJnv-jC78KLn23UZyQApc8qcutUsHHGLSplsF2MqwrwNUmz2pCXp5-8nxM-GyLQ1Q795c3-QZ8fm_W</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Hernández-Galván, G</creator><creator>Mercado-Uribe, H</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1123-7375</orcidid></search><sort><creationdate>20231206</creationdate><title>Dehydration of biological membranes in a non-condensing environment</title><author>Hernández-Galván, G ; Mercado-Uribe, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f26bca3e51892094fcd11f816d49f44c1c657085709030046c30394281719b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air-water interface</topic><topic>Biological membranes</topic><topic>Bound water</topic><topic>Cell membranes</topic><topic>Dehydration</topic><topic>E coli</topic><topic>Evaporation</topic><topic>Internal pressure</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Osmotic stress</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Galván, G</creatorcontrib><creatorcontrib>Mercado-Uribe, H</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Galván, G</au><au>Mercado-Uribe, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydration of biological membranes in a non-condensing environment</atitle><jtitle>Soft matter</jtitle><date>2023-12-06</date><risdate>2023</risdate><volume>19</volume><issue>47</issue><spage>9173</spage><epage>9178</epage><pages>9173-9178</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of Escherichia coli through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour. The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3sm01181j</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1123-7375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2023-12, Vol.19 (47), p.9173-9178
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_D3SM01181J
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Air-water interface
Biological membranes
Bound water
Cell membranes
Dehydration
E coli
Evaporation
Internal pressure
Lipids
Liposomes
Osmotic stress
Thermogravimetry
title Dehydration of biological membranes in a non-condensing environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydration%20of%20biological%20membranes%20in%20a%20non-condensing%20environment&rft.jtitle=Soft%20matter&rft.au=Hern%C3%A1ndez-Galv%C3%A1n,%20G&rft.date=2023-12-06&rft.volume=19&rft.issue=47&rft.spage=9173&rft.epage=9178&rft.pages=9173-9178&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d3sm01181j&rft_dat=%3Cproquest_cross%3E2892947896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898332078&rft_id=info:pmid/&rfr_iscdi=true