Dehydration of biological membranes in a non-condensing environment
The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted co...
Gespeichert in:
Veröffentlicht in: | Soft matter 2023-12, Vol.19 (47), p.9173-9178 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9178 |
---|---|
container_issue | 47 |
container_start_page | 9173 |
container_title | Soft matter |
container_volume | 19 |
creator | Hernández-Galván, G Mercado-Uribe, H |
description | The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of
Escherichia coli
through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour.
The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. |
doi_str_mv | 10.1039/d3sm01181j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3SM01181J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892947896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f26bca3e51892094fcd11f816d49f44c1c657085709030046c30394281719b673</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqxbuw4EWE1cwmzSZHaesXFQ8qeFuy2aSm7CY12Qr996ZWKngYZg7PDMOL0CngK8BEXDckdhiAw2IPDaCkNGec8v3dTN4P0VGMC4wJp8AGaDzRH-smyN56l3mT1da3fm6VbLNOd3WQTsfMukxmzrtceddoF62bZ9p92eBdp11_jA6MbKM--e1D9HY7fR3f57Pnu4fxzSxXBIs-NwWrlSR6BFwUWFCjGgDDgTVUGEoVKDYqMU8lMMGYsrRGBC04lCBqVpIhutjeXQb_udKxrzoblW7b9KRfxapIdwUtuWCJnv-jC78KLn23UZyQApc8qcutUsHHGLSplsF2MqwrwNUmz2pCXp5-8nxM-GyLQ1Q795c3-QZ8fm_W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898332078</pqid></control><display><type>article</type><title>Dehydration of biological membranes in a non-condensing environment</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hernández-Galván, G ; Mercado-Uribe, H</creator><creatorcontrib>Hernández-Galván, G ; Mercado-Uribe, H</creatorcontrib><description>The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of
Escherichia coli
through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour.
The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d3sm01181j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Air-water interface ; Biological membranes ; Bound water ; Cell membranes ; Dehydration ; E coli ; Evaporation ; Internal pressure ; Lipids ; Liposomes ; Osmotic stress ; Thermogravimetry</subject><ispartof>Soft matter, 2023-12, Vol.19 (47), p.9173-9178</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-f26bca3e51892094fcd11f816d49f44c1c657085709030046c30394281719b673</cites><orcidid>0000-0002-1123-7375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hernández-Galván, G</creatorcontrib><creatorcontrib>Mercado-Uribe, H</creatorcontrib><title>Dehydration of biological membranes in a non-condensing environment</title><title>Soft matter</title><description>The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of
Escherichia coli
through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour.
The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it.</description><subject>Air-water interface</subject><subject>Biological membranes</subject><subject>Bound water</subject><subject>Cell membranes</subject><subject>Dehydration</subject><subject>E coli</subject><subject>Evaporation</subject><subject>Internal pressure</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Osmotic stress</subject><subject>Thermogravimetry</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgCtbqxbuw4EWE1cwmzSZHaesXFQ8qeFuy2aSm7CY12Qr996ZWKngYZg7PDMOL0CngK8BEXDckdhiAw2IPDaCkNGec8v3dTN4P0VGMC4wJp8AGaDzRH-smyN56l3mT1da3fm6VbLNOd3WQTsfMukxmzrtceddoF62bZ9p92eBdp11_jA6MbKM--e1D9HY7fR3f57Pnu4fxzSxXBIs-NwWrlSR6BFwUWFCjGgDDgTVUGEoVKDYqMU8lMMGYsrRGBC04lCBqVpIhutjeXQb_udKxrzoblW7b9KRfxapIdwUtuWCJnv-jC78KLn23UZyQApc8qcutUsHHGLSplsF2MqwrwNUmz2pCXp5-8nxM-GyLQ1Q795c3-QZ8fm_W</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Hernández-Galván, G</creator><creator>Mercado-Uribe, H</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1123-7375</orcidid></search><sort><creationdate>20231206</creationdate><title>Dehydration of biological membranes in a non-condensing environment</title><author>Hernández-Galván, G ; Mercado-Uribe, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f26bca3e51892094fcd11f816d49f44c1c657085709030046c30394281719b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air-water interface</topic><topic>Biological membranes</topic><topic>Bound water</topic><topic>Cell membranes</topic><topic>Dehydration</topic><topic>E coli</topic><topic>Evaporation</topic><topic>Internal pressure</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Osmotic stress</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Galván, G</creatorcontrib><creatorcontrib>Mercado-Uribe, H</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Galván, G</au><au>Mercado-Uribe, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydration of biological membranes in a non-condensing environment</atitle><jtitle>Soft matter</jtitle><date>2023-12-06</date><risdate>2023</risdate><volume>19</volume><issue>47</issue><spage>9173</spage><epage>9178</epage><pages>9173-9178</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of
Escherichia coli
through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour.
The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3sm01181j</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1123-7375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2023-12, Vol.19 (47), p.9173-9178 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3SM01181J |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Air-water interface Biological membranes Bound water Cell membranes Dehydration E coli Evaporation Internal pressure Lipids Liposomes Osmotic stress Thermogravimetry |
title | Dehydration of biological membranes in a non-condensing environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydration%20of%20biological%20membranes%20in%20a%20non-condensing%20environment&rft.jtitle=Soft%20matter&rft.au=Hern%C3%A1ndez-Galv%C3%A1n,%20G&rft.date=2023-12-06&rft.volume=19&rft.issue=47&rft.spage=9173&rft.epage=9178&rft.pages=9173-9178&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d3sm01181j&rft_dat=%3Cproquest_cross%3E2892947896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898332078&rft_id=info:pmid/&rfr_iscdi=true |