Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes

The thermodynamic instability of Na + -intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-05, Vol.15 (17), p.65-656
Hauptverfasser: Zhao, Wei, Wang, Chunting, Cheng, Zhenjie, Zheng, Cheng, Yao, Qian, Pan, Jun, Ma, Xiaojian, Yang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 656
container_issue 17
container_start_page 65
container_title Chemical science (Cambridge)
container_volume 15
creator Zhao, Wei
Wang, Chunting
Cheng, Zhenjie
Zheng, Cheng
Yao, Qian
Pan, Jun
Ma, Xiaojian
Yang, Jian
description The thermodynamic instability of Na + -intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein, we successfully apply low-concentration imidazole-based electrolytes to graphite anodes for sodium-ion batteries. Specifically, low concentrations ensure high ionic conductivity while saving on costs. Methylimidazole molecules can be co-intercalated with Na + , and a small amount of unreleased solvated Na + serves the dual purpose of providing support to the graphite layer and preventing peeling off. The interphase formed in imidazole is more uniform and dense compared with that in ether electrolytes, which reduces side reactions and the risk of internal short circuits. The obtained battery demonstrates a long cycle life of 1800 cycles with a capacity retention of 84.6%. This success extends to other imidazole-based solvents such as 1-propylimidazole and 1-butylimidazole. Low-concentration imidazole-based electrolytes were employed in graphite anodes for sodium-ion batteries via a co-intercalation mechanism. The resulting battery exhibits an impressive cycle life of 1800 cycles with a capacity retention of 84.6%.
doi_str_mv 10.1039/d3sc06640a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3SC06640A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049213616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-1e08f63c9a20434dd61c0ce7b957459b702b5bf6723a4592049a625f27f10b623</originalsourceid><addsrcrecordid>eNpdks1vEzEQxS1URKvSC3eQpV5QpQV_7HrjE6oCBaQKJD7O1qx3NnHl2MF2gspfj0NKoPVlbM1Pb571hpBnnL3iTOrXo8yWKdUyeEROBGt5ozqpjw53wY7JWc43rB4peSf6J-RYzpTWQokTMn3BLYJ3YUHLEuknoLnEBAukAy5h62KicaKLBOulK0ghxBEzdYH6-LOxMVgMJUFxMVC3ciP8ih6bATKOFD3akqK_LZifkscT-Ixnd_WUfL96923-obn-_P7j_PK6sXI2Kw1HNpuUtBqqe9mOo-KWWewH3fVtp4eeiaEbJtULCfVdIQ1KdJPoJ84GJeQpebPXXW-GFY57d96sk1tBujURnLnfCW5pFnFrOGdKcKGqwss7hRR_bDAXs3LZovcQMG6ykaxjWqq-3Q07f4DexE0K9X-VarXgUvGd4MWesinmnHA6uOHM7CI0b-XX-Z8ILyv84n__B_RvYBV4vgdStofuvx2QvwHd6KDi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049213616</pqid></control><display><type>article</type><title>Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes</title><source>PubMed Central Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Zhao, Wei ; Wang, Chunting ; Cheng, Zhenjie ; Zheng, Cheng ; Yao, Qian ; Pan, Jun ; Ma, Xiaojian ; Yang, Jian</creator><creatorcontrib>Zhao, Wei ; Wang, Chunting ; Cheng, Zhenjie ; Zheng, Cheng ; Yao, Qian ; Pan, Jun ; Ma, Xiaojian ; Yang, Jian</creatorcontrib><description>The thermodynamic instability of Na + -intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein, we successfully apply low-concentration imidazole-based electrolytes to graphite anodes for sodium-ion batteries. Specifically, low concentrations ensure high ionic conductivity while saving on costs. Methylimidazole molecules can be co-intercalated with Na + , and a small amount of unreleased solvated Na + serves the dual purpose of providing support to the graphite layer and preventing peeling off. The interphase formed in imidazole is more uniform and dense compared with that in ether electrolytes, which reduces side reactions and the risk of internal short circuits. The obtained battery demonstrates a long cycle life of 1800 cycles with a capacity retention of 84.6%. This success extends to other imidazole-based solvents such as 1-propylimidazole and 1-butylimidazole. Low-concentration imidazole-based electrolytes were employed in graphite anodes for sodium-ion batteries via a co-intercalation mechanism. The resulting battery exhibits an impressive cycle life of 1800 cycles with a capacity retention of 84.6%.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc06640a</identifier><identifier>PMID: 38699262</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anodes ; Battery cycles ; Chemistry ; Electrolytes ; Graphite ; Imidazole ; Ion currents ; Low concentrations ; Short circuits ; Sodium ; Sodium-ion batteries ; Solvents</subject><ispartof>Chemical science (Cambridge), 2024-05, Vol.15 (17), p.65-656</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-1e08f63c9a20434dd61c0ce7b957459b702b5bf6723a4592049a625f27f10b623</cites><orcidid>0000-0002-6401-276X ; 0000-0001-8593-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062126/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062126/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38699262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Wang, Chunting</creatorcontrib><creatorcontrib>Cheng, Zhenjie</creatorcontrib><creatorcontrib>Zheng, Cheng</creatorcontrib><creatorcontrib>Yao, Qian</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Ma, Xiaojian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The thermodynamic instability of Na + -intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein, we successfully apply low-concentration imidazole-based electrolytes to graphite anodes for sodium-ion batteries. Specifically, low concentrations ensure high ionic conductivity while saving on costs. Methylimidazole molecules can be co-intercalated with Na + , and a small amount of unreleased solvated Na + serves the dual purpose of providing support to the graphite layer and preventing peeling off. The interphase formed in imidazole is more uniform and dense compared with that in ether electrolytes, which reduces side reactions and the risk of internal short circuits. The obtained battery demonstrates a long cycle life of 1800 cycles with a capacity retention of 84.6%. This success extends to other imidazole-based solvents such as 1-propylimidazole and 1-butylimidazole. Low-concentration imidazole-based electrolytes were employed in graphite anodes for sodium-ion batteries via a co-intercalation mechanism. The resulting battery exhibits an impressive cycle life of 1800 cycles with a capacity retention of 84.6%.</description><subject>Anodes</subject><subject>Battery cycles</subject><subject>Chemistry</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>Imidazole</subject><subject>Ion currents</subject><subject>Low concentrations</subject><subject>Short circuits</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solvents</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdks1vEzEQxS1URKvSC3eQpV5QpQV_7HrjE6oCBaQKJD7O1qx3NnHl2MF2gspfj0NKoPVlbM1Pb571hpBnnL3iTOrXo8yWKdUyeEROBGt5ozqpjw53wY7JWc43rB4peSf6J-RYzpTWQokTMn3BLYJ3YUHLEuknoLnEBAukAy5h62KicaKLBOulK0ghxBEzdYH6-LOxMVgMJUFxMVC3ciP8ih6bATKOFD3akqK_LZifkscT-Ixnd_WUfL96923-obn-_P7j_PK6sXI2Kw1HNpuUtBqqe9mOo-KWWewH3fVtp4eeiaEbJtULCfVdIQ1KdJPoJ84GJeQpebPXXW-GFY57d96sk1tBujURnLnfCW5pFnFrOGdKcKGqwss7hRR_bDAXs3LZovcQMG6ykaxjWqq-3Q07f4DexE0K9X-VarXgUvGd4MWesinmnHA6uOHM7CI0b-XX-Z8ILyv84n__B_RvYBV4vgdStofuvx2QvwHd6KDi</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhao, Wei</creator><creator>Wang, Chunting</creator><creator>Cheng, Zhenjie</creator><creator>Zheng, Cheng</creator><creator>Yao, Qian</creator><creator>Pan, Jun</creator><creator>Ma, Xiaojian</creator><creator>Yang, Jian</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6401-276X</orcidid><orcidid>https://orcid.org/0000-0001-8593-271X</orcidid></search><sort><creationdate>20240501</creationdate><title>Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes</title><author>Zhao, Wei ; Wang, Chunting ; Cheng, Zhenjie ; Zheng, Cheng ; Yao, Qian ; Pan, Jun ; Ma, Xiaojian ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-1e08f63c9a20434dd61c0ce7b957459b702b5bf6723a4592049a625f27f10b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Battery cycles</topic><topic>Chemistry</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>Imidazole</topic><topic>Ion currents</topic><topic>Low concentrations</topic><topic>Short circuits</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Wang, Chunting</creatorcontrib><creatorcontrib>Cheng, Zhenjie</creatorcontrib><creatorcontrib>Zheng, Cheng</creatorcontrib><creatorcontrib>Yao, Qian</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Ma, Xiaojian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wei</au><au>Wang, Chunting</au><au>Cheng, Zhenjie</au><au>Zheng, Cheng</au><au>Yao, Qian</au><au>Pan, Jun</au><au>Ma, Xiaojian</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>17</issue><spage>65</spage><epage>656</epage><pages>65-656</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The thermodynamic instability of Na + -intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein, we successfully apply low-concentration imidazole-based electrolytes to graphite anodes for sodium-ion batteries. Specifically, low concentrations ensure high ionic conductivity while saving on costs. Methylimidazole molecules can be co-intercalated with Na + , and a small amount of unreleased solvated Na + serves the dual purpose of providing support to the graphite layer and preventing peeling off. The interphase formed in imidazole is more uniform and dense compared with that in ether electrolytes, which reduces side reactions and the risk of internal short circuits. The obtained battery demonstrates a long cycle life of 1800 cycles with a capacity retention of 84.6%. This success extends to other imidazole-based solvents such as 1-propylimidazole and 1-butylimidazole. Low-concentration imidazole-based electrolytes were employed in graphite anodes for sodium-ion batteries via a co-intercalation mechanism. The resulting battery exhibits an impressive cycle life of 1800 cycles with a capacity retention of 84.6%.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38699262</pmid><doi>10.1039/d3sc06640a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6401-276X</orcidid><orcidid>https://orcid.org/0000-0001-8593-271X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-05, Vol.15 (17), p.65-656
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_D3SC06640A
source PubMed Central Free; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects Anodes
Battery cycles
Chemistry
Electrolytes
Graphite
Imidazole
Ion currents
Low concentrations
Short circuits
Sodium
Sodium-ion batteries
Solvents
title Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Na%20storage%20behavior%20of%20graphite%20anodes%20in%20low-concentration%20imidazole-based%20electrolytes&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Zhao,%20Wei&rft.date=2024-05-01&rft.volume=15&rft.issue=17&rft.spage=65&rft.epage=656&rft.pages=65-656&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc06640a&rft_dat=%3Cproquest_cross%3E3049213616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049213616&rft_id=info:pmid/38699262&rfr_iscdi=true