Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes
The thermodynamic instability of Na + -intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-05, Vol.15 (17), p.65-656 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 656 |
---|---|
container_issue | 17 |
container_start_page | 65 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | Zhao, Wei Wang, Chunting Cheng, Zhenjie Zheng, Cheng Yao, Qian Pan, Jun Ma, Xiaojian Yang, Jian |
description | The thermodynamic instability of Na
+
-intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein, we successfully apply low-concentration imidazole-based electrolytes to graphite anodes for sodium-ion batteries. Specifically, low concentrations ensure high ionic conductivity while saving on costs. Methylimidazole molecules can be co-intercalated with Na
+
, and a small amount of unreleased solvated Na
+
serves the dual purpose of providing support to the graphite layer and preventing peeling off. The interphase formed in imidazole is more uniform and dense compared with that in ether electrolytes, which reduces side reactions and the risk of internal short circuits. The obtained battery demonstrates a long cycle life of 1800 cycles with a capacity retention of 84.6%. This success extends to other imidazole-based solvents such as 1-propylimidazole and 1-butylimidazole.
Low-concentration imidazole-based electrolytes were employed in graphite anodes for sodium-ion batteries
via
a co-intercalation mechanism. The resulting battery exhibits an impressive cycle life of 1800 cycles with a capacity retention of 84.6%. |
doi_str_mv | 10.1039/d3sc06640a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3SC06640A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049213616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-1e08f63c9a20434dd61c0ce7b957459b702b5bf6723a4592049a625f27f10b623</originalsourceid><addsrcrecordid>eNpdks1vEzEQxS1URKvSC3eQpV5QpQV_7HrjE6oCBaQKJD7O1qx3NnHl2MF2gspfj0NKoPVlbM1Pb571hpBnnL3iTOrXo8yWKdUyeEROBGt5ozqpjw53wY7JWc43rB4peSf6J-RYzpTWQokTMn3BLYJ3YUHLEuknoLnEBAukAy5h62KicaKLBOulK0ghxBEzdYH6-LOxMVgMJUFxMVC3ciP8ih6bATKOFD3akqK_LZifkscT-Ixnd_WUfL96923-obn-_P7j_PK6sXI2Kw1HNpuUtBqqe9mOo-KWWewH3fVtp4eeiaEbJtULCfVdIQ1KdJPoJ84GJeQpebPXXW-GFY57d96sk1tBujURnLnfCW5pFnFrOGdKcKGqwss7hRR_bDAXs3LZovcQMG6ykaxjWqq-3Q07f4DexE0K9X-VarXgUvGd4MWesinmnHA6uOHM7CI0b-XX-Z8ILyv84n__B_RvYBV4vgdStofuvx2QvwHd6KDi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049213616</pqid></control><display><type>article</type><title>Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes</title><source>PubMed Central Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Zhao, Wei ; Wang, Chunting ; Cheng, Zhenjie ; Zheng, Cheng ; Yao, Qian ; Pan, Jun ; Ma, Xiaojian ; Yang, Jian</creator><creatorcontrib>Zhao, Wei ; Wang, Chunting ; Cheng, Zhenjie ; Zheng, Cheng ; Yao, Qian ; Pan, Jun ; Ma, Xiaojian ; Yang, Jian</creatorcontrib><description>The thermodynamic instability of Na
+
-intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein, we successfully apply low-concentration imidazole-based electrolytes to graphite anodes for sodium-ion batteries. Specifically, low concentrations ensure high ionic conductivity while saving on costs. Methylimidazole molecules can be co-intercalated with Na
+
, and a small amount of unreleased solvated Na
+
serves the dual purpose of providing support to the graphite layer and preventing peeling off. The interphase formed in imidazole is more uniform and dense compared with that in ether electrolytes, which reduces side reactions and the risk of internal short circuits. The obtained battery demonstrates a long cycle life of 1800 cycles with a capacity retention of 84.6%. This success extends to other imidazole-based solvents such as 1-propylimidazole and 1-butylimidazole.
Low-concentration imidazole-based electrolytes were employed in graphite anodes for sodium-ion batteries
via
a co-intercalation mechanism. The resulting battery exhibits an impressive cycle life of 1800 cycles with a capacity retention of 84.6%.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc06640a</identifier><identifier>PMID: 38699262</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anodes ; Battery cycles ; Chemistry ; Electrolytes ; Graphite ; Imidazole ; Ion currents ; Low concentrations ; Short circuits ; Sodium ; Sodium-ion batteries ; Solvents</subject><ispartof>Chemical science (Cambridge), 2024-05, Vol.15 (17), p.65-656</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-1e08f63c9a20434dd61c0ce7b957459b702b5bf6723a4592049a625f27f10b623</cites><orcidid>0000-0002-6401-276X ; 0000-0001-8593-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062126/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062126/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38699262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Wang, Chunting</creatorcontrib><creatorcontrib>Cheng, Zhenjie</creatorcontrib><creatorcontrib>Zheng, Cheng</creatorcontrib><creatorcontrib>Yao, Qian</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Ma, Xiaojian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The thermodynamic instability of Na
+
-intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein, we successfully apply low-concentration imidazole-based electrolytes to graphite anodes for sodium-ion batteries. Specifically, low concentrations ensure high ionic conductivity while saving on costs. Methylimidazole molecules can be co-intercalated with Na
+
, and a small amount of unreleased solvated Na
+
serves the dual purpose of providing support to the graphite layer and preventing peeling off. The interphase formed in imidazole is more uniform and dense compared with that in ether electrolytes, which reduces side reactions and the risk of internal short circuits. The obtained battery demonstrates a long cycle life of 1800 cycles with a capacity retention of 84.6%. This success extends to other imidazole-based solvents such as 1-propylimidazole and 1-butylimidazole.
Low-concentration imidazole-based electrolytes were employed in graphite anodes for sodium-ion batteries
via
a co-intercalation mechanism. The resulting battery exhibits an impressive cycle life of 1800 cycles with a capacity retention of 84.6%.</description><subject>Anodes</subject><subject>Battery cycles</subject><subject>Chemistry</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>Imidazole</subject><subject>Ion currents</subject><subject>Low concentrations</subject><subject>Short circuits</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Solvents</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdks1vEzEQxS1URKvSC3eQpV5QpQV_7HrjE6oCBaQKJD7O1qx3NnHl2MF2gspfj0NKoPVlbM1Pb571hpBnnL3iTOrXo8yWKdUyeEROBGt5ozqpjw53wY7JWc43rB4peSf6J-RYzpTWQokTMn3BLYJ3YUHLEuknoLnEBAukAy5h62KicaKLBOulK0ghxBEzdYH6-LOxMVgMJUFxMVC3ciP8ih6bATKOFD3akqK_LZifkscT-Ixnd_WUfL96923-obn-_P7j_PK6sXI2Kw1HNpuUtBqqe9mOo-KWWewH3fVtp4eeiaEbJtULCfVdIQ1KdJPoJ84GJeQpebPXXW-GFY57d96sk1tBujURnLnfCW5pFnFrOGdKcKGqwss7hRR_bDAXs3LZovcQMG6ykaxjWqq-3Q07f4DexE0K9X-VarXgUvGd4MWesinmnHA6uOHM7CI0b-XX-Z8ILyv84n__B_RvYBV4vgdStofuvx2QvwHd6KDi</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhao, Wei</creator><creator>Wang, Chunting</creator><creator>Cheng, Zhenjie</creator><creator>Zheng, Cheng</creator><creator>Yao, Qian</creator><creator>Pan, Jun</creator><creator>Ma, Xiaojian</creator><creator>Yang, Jian</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6401-276X</orcidid><orcidid>https://orcid.org/0000-0001-8593-271X</orcidid></search><sort><creationdate>20240501</creationdate><title>Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes</title><author>Zhao, Wei ; Wang, Chunting ; Cheng, Zhenjie ; Zheng, Cheng ; Yao, Qian ; Pan, Jun ; Ma, Xiaojian ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-1e08f63c9a20434dd61c0ce7b957459b702b5bf6723a4592049a625f27f10b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Battery cycles</topic><topic>Chemistry</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>Imidazole</topic><topic>Ion currents</topic><topic>Low concentrations</topic><topic>Short circuits</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Wang, Chunting</creatorcontrib><creatorcontrib>Cheng, Zhenjie</creatorcontrib><creatorcontrib>Zheng, Cheng</creatorcontrib><creatorcontrib>Yao, Qian</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Ma, Xiaojian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wei</au><au>Wang, Chunting</au><au>Cheng, Zhenjie</au><au>Zheng, Cheng</au><au>Yao, Qian</au><au>Pan, Jun</au><au>Ma, Xiaojian</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>17</issue><spage>65</spage><epage>656</epage><pages>65-656</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The thermodynamic instability of Na
+
-intercalated compounds is an important factor limiting the application of graphite anodes in sodium-ion batteries. Although solvent co-intercalation is recognized as a simple and effective strategy, the challenge lies in the lack of durable electrolytes. Herein, we successfully apply low-concentration imidazole-based electrolytes to graphite anodes for sodium-ion batteries. Specifically, low concentrations ensure high ionic conductivity while saving on costs. Methylimidazole molecules can be co-intercalated with Na
+
, and a small amount of unreleased solvated Na
+
serves the dual purpose of providing support to the graphite layer and preventing peeling off. The interphase formed in imidazole is more uniform and dense compared with that in ether electrolytes, which reduces side reactions and the risk of internal short circuits. The obtained battery demonstrates a long cycle life of 1800 cycles with a capacity retention of 84.6%. This success extends to other imidazole-based solvents such as 1-propylimidazole and 1-butylimidazole.
Low-concentration imidazole-based electrolytes were employed in graphite anodes for sodium-ion batteries
via
a co-intercalation mechanism. The resulting battery exhibits an impressive cycle life of 1800 cycles with a capacity retention of 84.6%.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38699262</pmid><doi>10.1039/d3sc06640a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6401-276X</orcidid><orcidid>https://orcid.org/0000-0001-8593-271X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-05, Vol.15 (17), p.65-656 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3SC06640A |
source | PubMed Central Free; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Anodes Battery cycles Chemistry Electrolytes Graphite Imidazole Ion currents Low concentrations Short circuits Sodium Sodium-ion batteries Solvents |
title | Revealing the Na storage behavior of graphite anodes in low-concentration imidazole-based electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Na%20storage%20behavior%20of%20graphite%20anodes%20in%20low-concentration%20imidazole-based%20electrolytes&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Zhao,%20Wei&rft.date=2024-05-01&rft.volume=15&rft.issue=17&rft.spage=65&rft.epage=656&rft.pages=65-656&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc06640a&rft_dat=%3Cproquest_cross%3E3049213616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049213616&rft_id=info:pmid/38699262&rfr_iscdi=true |