Molten salt synthesis of disordered spinel CoFe 2 O 4 with improved electrochemical performance for sodium-ion batteries

Sodium-ion (Na-ion) batteries are currently being investigated as an attractive substitute for lithium-ion (Li-ion) batteries in large energy storage systems because of the more abundant and less expensive supply of Na than Li. However, the reversible capacity of Na-ions is limited because Na posses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2023-11, Vol.13 (48), p.34200-34209
Hauptverfasser: Muhamad, Sarah Umeera, Idris, Nurul Hayati, Yusoff, Hanis Mohd, Md Din, Muhamad Faiz, Majid, Siti Rohana, Noerochim, Lukman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34209
container_issue 48
container_start_page 34200
container_title RSC advances
container_volume 13
creator Muhamad, Sarah Umeera
Idris, Nurul Hayati
Yusoff, Hanis Mohd
Md Din, Muhamad Faiz
Majid, Siti Rohana
Noerochim, Lukman
description Sodium-ion (Na-ion) batteries are currently being investigated as an attractive substitute for lithium-ion (Li-ion) batteries in large energy storage systems because of the more abundant and less expensive supply of Na than Li. However, the reversible capacity of Na-ions is limited because Na possesses a large ionic radius and has a higher standard electrode potential than that of Li, making it challenging to obtain electrode materials that are capable of storing large quantities of Na-ions. This study investigates the potential of CoFe 2 O 4 synthesised via the molten salt method as an anode for Na-ion batteries. The obtained phase structure, morphology and charge and discharge properties of CoFe 2 O 4 are thoroughly assessed. The synthesised CoFe 2 O 4 has an octahedron morphology, with a particle size in the range of 1.1–3.6 μm and a crystallite size of ∼26 nm. Moreover, the CoFe 2 O 4 (M800) electrodes can deliver a high discharge capacity of 839 mA h g −1 in the first cycle at a current density of 0.1 A g −1 , reasonable cyclability of 98 mA h g −1 after 100 cycles and coulombic efficiency of ∼99%. The improved electrochemical performances of CoFe 2 O 4 can be due to Na-ion-pathway shortening, wherein the homogeneity and small size of CoFe 2 O 4 particles may enhance the Na-ion transportation. Therefore, this simple synthetic approach using molten salt favours the Na-ion diffusion and electron transport to a great extent and maximises the utilisation of CoFe 2 O 4 as a potential anode material for Na-ion batteries.
doi_str_mv 10.1039/D3RA07050F
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3RA07050F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3RA07050F</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1039_D3RA07050F3</originalsourceid><addsrcrecordid>eNqVj89Lw0AQhRexYNFe-hfMWYjuJm2kR6kGL1IQ72HdTMjIZifMrD_63xtB0Kvv8j547_IZs3b2ytlqd31XPd3aG7u1zYlZlnZTF6Wtd6d_-MysVF_tnHrrytotzecjx4wJ1McMekx5QCUF7qEjZelQsAOdKGGEPTcIJRxgAx-UB6BxEn6fd4wYsnAYcKTgI0woPcvoU0CYAZQ7ehsL4gQvPmcUQr0wi95HxdVPn5vL5v55_1AEYVXBvp2ERi_H1tn2W6_91av-df4Cy4VW9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molten salt synthesis of disordered spinel CoFe 2 O 4 with improved electrochemical performance for sodium-ion batteries</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Muhamad, Sarah Umeera ; Idris, Nurul Hayati ; Yusoff, Hanis Mohd ; Md Din, Muhamad Faiz ; Majid, Siti Rohana ; Noerochim, Lukman</creator><creatorcontrib>Muhamad, Sarah Umeera ; Idris, Nurul Hayati ; Yusoff, Hanis Mohd ; Md Din, Muhamad Faiz ; Majid, Siti Rohana ; Noerochim, Lukman</creatorcontrib><description>Sodium-ion (Na-ion) batteries are currently being investigated as an attractive substitute for lithium-ion (Li-ion) batteries in large energy storage systems because of the more abundant and less expensive supply of Na than Li. However, the reversible capacity of Na-ions is limited because Na possesses a large ionic radius and has a higher standard electrode potential than that of Li, making it challenging to obtain electrode materials that are capable of storing large quantities of Na-ions. This study investigates the potential of CoFe 2 O 4 synthesised via the molten salt method as an anode for Na-ion batteries. The obtained phase structure, morphology and charge and discharge properties of CoFe 2 O 4 are thoroughly assessed. The synthesised CoFe 2 O 4 has an octahedron morphology, with a particle size in the range of 1.1–3.6 μm and a crystallite size of ∼26 nm. Moreover, the CoFe 2 O 4 (M800) electrodes can deliver a high discharge capacity of 839 mA h g −1 in the first cycle at a current density of 0.1 A g −1 , reasonable cyclability of 98 mA h g −1 after 100 cycles and coulombic efficiency of ∼99%. The improved electrochemical performances of CoFe 2 O 4 can be due to Na-ion-pathway shortening, wherein the homogeneity and small size of CoFe 2 O 4 particles may enhance the Na-ion transportation. Therefore, this simple synthetic approach using molten salt favours the Na-ion diffusion and electron transport to a great extent and maximises the utilisation of CoFe 2 O 4 as a potential anode material for Na-ion batteries.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/D3RA07050F</identifier><language>eng</language><ispartof>RSC advances, 2023-11, Vol.13 (48), p.34200-34209</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1039_D3RA07050F3</cites><orcidid>0000-0001-6270-137X ; 0000-0002-3013-4259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Muhamad, Sarah Umeera</creatorcontrib><creatorcontrib>Idris, Nurul Hayati</creatorcontrib><creatorcontrib>Yusoff, Hanis Mohd</creatorcontrib><creatorcontrib>Md Din, Muhamad Faiz</creatorcontrib><creatorcontrib>Majid, Siti Rohana</creatorcontrib><creatorcontrib>Noerochim, Lukman</creatorcontrib><title>Molten salt synthesis of disordered spinel CoFe 2 O 4 with improved electrochemical performance for sodium-ion batteries</title><title>RSC advances</title><description>Sodium-ion (Na-ion) batteries are currently being investigated as an attractive substitute for lithium-ion (Li-ion) batteries in large energy storage systems because of the more abundant and less expensive supply of Na than Li. However, the reversible capacity of Na-ions is limited because Na possesses a large ionic radius and has a higher standard electrode potential than that of Li, making it challenging to obtain electrode materials that are capable of storing large quantities of Na-ions. This study investigates the potential of CoFe 2 O 4 synthesised via the molten salt method as an anode for Na-ion batteries. The obtained phase structure, morphology and charge and discharge properties of CoFe 2 O 4 are thoroughly assessed. The synthesised CoFe 2 O 4 has an octahedron morphology, with a particle size in the range of 1.1–3.6 μm and a crystallite size of ∼26 nm. Moreover, the CoFe 2 O 4 (M800) electrodes can deliver a high discharge capacity of 839 mA h g −1 in the first cycle at a current density of 0.1 A g −1 , reasonable cyclability of 98 mA h g −1 after 100 cycles and coulombic efficiency of ∼99%. The improved electrochemical performances of CoFe 2 O 4 can be due to Na-ion-pathway shortening, wherein the homogeneity and small size of CoFe 2 O 4 particles may enhance the Na-ion transportation. Therefore, this simple synthetic approach using molten salt favours the Na-ion diffusion and electron transport to a great extent and maximises the utilisation of CoFe 2 O 4 as a potential anode material for Na-ion batteries.</description><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVj89Lw0AQhRexYNFe-hfMWYjuJm2kR6kGL1IQ72HdTMjIZifMrD_63xtB0Kvv8j547_IZs3b2ytlqd31XPd3aG7u1zYlZlnZTF6Wtd6d_-MysVF_tnHrrytotzecjx4wJ1McMekx5QCUF7qEjZelQsAOdKGGEPTcIJRxgAx-UB6BxEn6fd4wYsnAYcKTgI0woPcvoU0CYAZQ7ehsL4gQvPmcUQr0wi95HxdVPn5vL5v55_1AEYVXBvp2ERi_H1tn2W6_91av-df4Cy4VW9A</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>Muhamad, Sarah Umeera</creator><creator>Idris, Nurul Hayati</creator><creator>Yusoff, Hanis Mohd</creator><creator>Md Din, Muhamad Faiz</creator><creator>Majid, Siti Rohana</creator><creator>Noerochim, Lukman</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6270-137X</orcidid><orcidid>https://orcid.org/0000-0002-3013-4259</orcidid></search><sort><creationdate>20231116</creationdate><title>Molten salt synthesis of disordered spinel CoFe 2 O 4 with improved electrochemical performance for sodium-ion batteries</title><author>Muhamad, Sarah Umeera ; Idris, Nurul Hayati ; Yusoff, Hanis Mohd ; Md Din, Muhamad Faiz ; Majid, Siti Rohana ; Noerochim, Lukman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1039_D3RA07050F3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhamad, Sarah Umeera</creatorcontrib><creatorcontrib>Idris, Nurul Hayati</creatorcontrib><creatorcontrib>Yusoff, Hanis Mohd</creatorcontrib><creatorcontrib>Md Din, Muhamad Faiz</creatorcontrib><creatorcontrib>Majid, Siti Rohana</creatorcontrib><creatorcontrib>Noerochim, Lukman</creatorcontrib><collection>CrossRef</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhamad, Sarah Umeera</au><au>Idris, Nurul Hayati</au><au>Yusoff, Hanis Mohd</au><au>Md Din, Muhamad Faiz</au><au>Majid, Siti Rohana</au><au>Noerochim, Lukman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molten salt synthesis of disordered spinel CoFe 2 O 4 with improved electrochemical performance for sodium-ion batteries</atitle><jtitle>RSC advances</jtitle><date>2023-11-16</date><risdate>2023</risdate><volume>13</volume><issue>48</issue><spage>34200</spage><epage>34209</epage><pages>34200-34209</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Sodium-ion (Na-ion) batteries are currently being investigated as an attractive substitute for lithium-ion (Li-ion) batteries in large energy storage systems because of the more abundant and less expensive supply of Na than Li. However, the reversible capacity of Na-ions is limited because Na possesses a large ionic radius and has a higher standard electrode potential than that of Li, making it challenging to obtain electrode materials that are capable of storing large quantities of Na-ions. This study investigates the potential of CoFe 2 O 4 synthesised via the molten salt method as an anode for Na-ion batteries. The obtained phase structure, morphology and charge and discharge properties of CoFe 2 O 4 are thoroughly assessed. The synthesised CoFe 2 O 4 has an octahedron morphology, with a particle size in the range of 1.1–3.6 μm and a crystallite size of ∼26 nm. Moreover, the CoFe 2 O 4 (M800) electrodes can deliver a high discharge capacity of 839 mA h g −1 in the first cycle at a current density of 0.1 A g −1 , reasonable cyclability of 98 mA h g −1 after 100 cycles and coulombic efficiency of ∼99%. The improved electrochemical performances of CoFe 2 O 4 can be due to Na-ion-pathway shortening, wherein the homogeneity and small size of CoFe 2 O 4 particles may enhance the Na-ion transportation. Therefore, this simple synthetic approach using molten salt favours the Na-ion diffusion and electron transport to a great extent and maximises the utilisation of CoFe 2 O 4 as a potential anode material for Na-ion batteries.</abstract><doi>10.1039/D3RA07050F</doi><orcidid>https://orcid.org/0000-0001-6270-137X</orcidid><orcidid>https://orcid.org/0000-0002-3013-4259</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2023-11, Vol.13 (48), p.34200-34209
issn 2046-2069
2046-2069
language eng
recordid cdi_crossref_primary_10_1039_D3RA07050F
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Molten salt synthesis of disordered spinel CoFe 2 O 4 with improved electrochemical performance for sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molten%20salt%20synthesis%20of%20disordered%20spinel%20CoFe%202%20O%204%20with%20improved%20electrochemical%20performance%20for%20sodium-ion%20batteries&rft.jtitle=RSC%20advances&rft.au=Muhamad,%20Sarah%20Umeera&rft.date=2023-11-16&rft.volume=13&rft.issue=48&rft.spage=34200&rft.epage=34209&rft.pages=34200-34209&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/D3RA07050F&rft_dat=%3Ccrossref%3E10_1039_D3RA07050F%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true