Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal
Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic bl...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-11, Vol.15 (44), p.1788-17817 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17817 |
---|---|
container_issue | 44 |
container_start_page | 1788 |
container_title | Nanoscale |
container_volume | 15 |
creator | Khatun, Nurjahan Sridurai, Vimala Nair, Geetha G |
description | Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light.
Experimental investigations supported by FEM simulations show that adding high-index nanoparticles increases the refractive index contrast of otherwise incomplete photonic band gap (PBG) Blue Phase I, driving it towards a complete PBG system. |
doi_str_mv | 10.1039/d3nr03366j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NR03366J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860618391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-131fa8d939dbca9e0f693c2b1c26b7607aa7c85fda9629424a15cc5c9bb6f9ff3</originalsourceid><addsrcrecordid>eNpd0d9LwzAQB_AiCs7pi-9CwBcRqknTps2jzN8MBZnP5ZqkW0qWdEmr7r-3czLBpzuOD8fxvSg6JfiKYMqvJbUeU8pYsxeNEpzimNI82d_1LD2MjkJoMGacMjqKmpn7BC8DEm7ZGtUp1C5c56wWqAIr0RxapC0CtNDzBfKq9iA6_aGGoVRfyIJ1LfhOC6Ni6VolUWX6zRIIChm96rVEwq9DB-Y4OqjBBHXyW8fR-_3dbPIYT18fniY301hQknYxoaSGQnLKZSWAK1wPp4qkIiJhVc5wDpCLIqslcJbwNEmBZEJkglcVq3ld03F0sd3berfqVejKpQ5CGQNWuT6UScEwIwXlZKDn_2jjem-H6wbFMWVZRvJBXW6V8C6EIYOy9XoJfl0SXG5iL2_py9tP7M8DPttiH8TO_b2FfgM4DIBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890365517</pqid></control><display><type>article</type><title>Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Khatun, Nurjahan ; Sridurai, Vimala ; Nair, Geetha G</creator><creatorcontrib>Khatun, Nurjahan ; Sridurai, Vimala ; Nair, Geetha G</creatorcontrib><description>Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (<0.1). The present work attempts to drive a cubic BP towards a complete PBG
via
a simple approach of high refractive index nanoparticle-doping. The photonic band diagrams and reflection spectra of the nanoparticle-doped BP simulated using the finite element method show an increased PBG width, a parameter that quantifies the complete PBG. The reflection spectra obtained from UV-Vis-NIR spectroscopy show an increase (by a factor of >2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light.
Experimental investigations supported by FEM simulations show that adding high-index nanoparticles increases the refractive index contrast of otherwise incomplete photonic band gap (PBG) Blue Phase I, driving it towards a complete PBG system.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr03366j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystals ; Electric fields ; Finite element method ; Incident light ; Light refraction ; Liquid crystals ; Nanoparticles ; Photonic band gaps ; Photonic crystals ; Reflection ; Refractivity ; Simulation ; Spectra ; Spectrum analysis</subject><ispartof>Nanoscale, 2023-11, Vol.15 (44), p.1788-17817</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-131fa8d939dbca9e0f693c2b1c26b7607aa7c85fda9629424a15cc5c9bb6f9ff3</citedby><cites>FETCH-LOGICAL-c314t-131fa8d939dbca9e0f693c2b1c26b7607aa7c85fda9629424a15cc5c9bb6f9ff3</cites><orcidid>0000-0002-9071-6971 ; 0000-0003-1006-3315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Khatun, Nurjahan</creatorcontrib><creatorcontrib>Sridurai, Vimala</creatorcontrib><creatorcontrib>Nair, Geetha G</creatorcontrib><title>Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal</title><title>Nanoscale</title><description>Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (<0.1). The present work attempts to drive a cubic BP towards a complete PBG
via
a simple approach of high refractive index nanoparticle-doping. The photonic band diagrams and reflection spectra of the nanoparticle-doped BP simulated using the finite element method show an increased PBG width, a parameter that quantifies the complete PBG. The reflection spectra obtained from UV-Vis-NIR spectroscopy show an increase (by a factor of >2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light.
Experimental investigations supported by FEM simulations show that adding high-index nanoparticles increases the refractive index contrast of otherwise incomplete photonic band gap (PBG) Blue Phase I, driving it towards a complete PBG system.</description><subject>Crystals</subject><subject>Electric fields</subject><subject>Finite element method</subject><subject>Incident light</subject><subject>Light refraction</subject><subject>Liquid crystals</subject><subject>Nanoparticles</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Reflection</subject><subject>Refractivity</subject><subject>Simulation</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LwzAQB_AiCs7pi-9CwBcRqknTps2jzN8MBZnP5ZqkW0qWdEmr7r-3czLBpzuOD8fxvSg6JfiKYMqvJbUeU8pYsxeNEpzimNI82d_1LD2MjkJoMGacMjqKmpn7BC8DEm7ZGtUp1C5c56wWqAIr0RxapC0CtNDzBfKq9iA6_aGGoVRfyIJ1LfhOC6Ni6VolUWX6zRIIChm96rVEwq9DB-Y4OqjBBHXyW8fR-_3dbPIYT18fniY301hQknYxoaSGQnLKZSWAK1wPp4qkIiJhVc5wDpCLIqslcJbwNEmBZEJkglcVq3ld03F0sd3berfqVejKpQ5CGQNWuT6UScEwIwXlZKDn_2jjem-H6wbFMWVZRvJBXW6V8C6EIYOy9XoJfl0SXG5iL2_py9tP7M8DPttiH8TO_b2FfgM4DIBk</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>Khatun, Nurjahan</creator><creator>Sridurai, Vimala</creator><creator>Nair, Geetha G</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9071-6971</orcidid><orcidid>https://orcid.org/0000-0003-1006-3315</orcidid></search><sort><creationdate>20231116</creationdate><title>Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal</title><author>Khatun, Nurjahan ; Sridurai, Vimala ; Nair, Geetha G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-131fa8d939dbca9e0f693c2b1c26b7607aa7c85fda9629424a15cc5c9bb6f9ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystals</topic><topic>Electric fields</topic><topic>Finite element method</topic><topic>Incident light</topic><topic>Light refraction</topic><topic>Liquid crystals</topic><topic>Nanoparticles</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Reflection</topic><topic>Refractivity</topic><topic>Simulation</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatun, Nurjahan</creatorcontrib><creatorcontrib>Sridurai, Vimala</creatorcontrib><creatorcontrib>Nair, Geetha G</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatun, Nurjahan</au><au>Sridurai, Vimala</au><au>Nair, Geetha G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal</atitle><jtitle>Nanoscale</jtitle><date>2023-11-16</date><risdate>2023</risdate><volume>15</volume><issue>44</issue><spage>1788</spage><epage>17817</epage><pages>1788-17817</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (<0.1). The present work attempts to drive a cubic BP towards a complete PBG
via
a simple approach of high refractive index nanoparticle-doping. The photonic band diagrams and reflection spectra of the nanoparticle-doped BP simulated using the finite element method show an increased PBG width, a parameter that quantifies the complete PBG. The reflection spectra obtained from UV-Vis-NIR spectroscopy show an increase (by a factor of >2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light.
Experimental investigations supported by FEM simulations show that adding high-index nanoparticles increases the refractive index contrast of otherwise incomplete photonic band gap (PBG) Blue Phase I, driving it towards a complete PBG system.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr03366j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9071-6971</orcidid><orcidid>https://orcid.org/0000-0003-1006-3315</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-11, Vol.15 (44), p.1788-17817 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3NR03366J |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Crystals Electric fields Finite element method Incident light Light refraction Liquid crystals Nanoparticles Photonic band gaps Photonic crystals Reflection Refractivity Simulation Spectra Spectrum analysis |
title | Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20complete%20photonic%20band%20gap%20in%20a%20high%20refractive%20index%20nanoparticle-doped%20blue%20phase%20liquid%20crystal&rft.jtitle=Nanoscale&rft.au=Khatun,%20Nurjahan&rft.date=2023-11-16&rft.volume=15&rft.issue=44&rft.spage=1788&rft.epage=17817&rft.pages=1788-17817&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr03366j&rft_dat=%3Cproquest_cross%3E2860618391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890365517&rft_id=info:pmid/&rfr_iscdi=true |