Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal

Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-11, Vol.15 (44), p.1788-17817
Hauptverfasser: Khatun, Nurjahan, Sridurai, Vimala, Nair, Geetha G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17817
container_issue 44
container_start_page 1788
container_title Nanoscale
container_volume 15
creator Khatun, Nurjahan
Sridurai, Vimala
Nair, Geetha G
description Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light. Experimental investigations supported by FEM simulations show that adding high-index nanoparticles increases the refractive index contrast of otherwise incomplete photonic band gap (PBG) Blue Phase I, driving it towards a complete PBG system.
doi_str_mv 10.1039/d3nr03366j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NR03366J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860618391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-131fa8d939dbca9e0f693c2b1c26b7607aa7c85fda9629424a15cc5c9bb6f9ff3</originalsourceid><addsrcrecordid>eNpd0d9LwzAQB_AiCs7pi-9CwBcRqknTps2jzN8MBZnP5ZqkW0qWdEmr7r-3czLBpzuOD8fxvSg6JfiKYMqvJbUeU8pYsxeNEpzimNI82d_1LD2MjkJoMGacMjqKmpn7BC8DEm7ZGtUp1C5c56wWqAIr0RxapC0CtNDzBfKq9iA6_aGGoVRfyIJ1LfhOC6Ni6VolUWX6zRIIChm96rVEwq9DB-Y4OqjBBHXyW8fR-_3dbPIYT18fniY301hQknYxoaSGQnLKZSWAK1wPp4qkIiJhVc5wDpCLIqslcJbwNEmBZEJkglcVq3ld03F0sd3berfqVejKpQ5CGQNWuT6UScEwIwXlZKDn_2jjem-H6wbFMWVZRvJBXW6V8C6EIYOy9XoJfl0SXG5iL2_py9tP7M8DPttiH8TO_b2FfgM4DIBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890365517</pqid></control><display><type>article</type><title>Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Khatun, Nurjahan ; Sridurai, Vimala ; Nair, Geetha G</creator><creatorcontrib>Khatun, Nurjahan ; Sridurai, Vimala ; Nair, Geetha G</creatorcontrib><description>Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (&lt;0.1). The present work attempts to drive a cubic BP towards a complete PBG via a simple approach of high refractive index nanoparticle-doping. The photonic band diagrams and reflection spectra of the nanoparticle-doped BP simulated using the finite element method show an increased PBG width, a parameter that quantifies the complete PBG. The reflection spectra obtained from UV-Vis-NIR spectroscopy show an increase (by a factor of &gt;2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light. Experimental investigations supported by FEM simulations show that adding high-index nanoparticles increases the refractive index contrast of otherwise incomplete photonic band gap (PBG) Blue Phase I, driving it towards a complete PBG system.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr03366j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystals ; Electric fields ; Finite element method ; Incident light ; Light refraction ; Liquid crystals ; Nanoparticles ; Photonic band gaps ; Photonic crystals ; Reflection ; Refractivity ; Simulation ; Spectra ; Spectrum analysis</subject><ispartof>Nanoscale, 2023-11, Vol.15 (44), p.1788-17817</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-131fa8d939dbca9e0f693c2b1c26b7607aa7c85fda9629424a15cc5c9bb6f9ff3</citedby><cites>FETCH-LOGICAL-c314t-131fa8d939dbca9e0f693c2b1c26b7607aa7c85fda9629424a15cc5c9bb6f9ff3</cites><orcidid>0000-0002-9071-6971 ; 0000-0003-1006-3315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Khatun, Nurjahan</creatorcontrib><creatorcontrib>Sridurai, Vimala</creatorcontrib><creatorcontrib>Nair, Geetha G</creatorcontrib><title>Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal</title><title>Nanoscale</title><description>Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (&lt;0.1). The present work attempts to drive a cubic BP towards a complete PBG via a simple approach of high refractive index nanoparticle-doping. The photonic band diagrams and reflection spectra of the nanoparticle-doped BP simulated using the finite element method show an increased PBG width, a parameter that quantifies the complete PBG. The reflection spectra obtained from UV-Vis-NIR spectroscopy show an increase (by a factor of &gt;2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light. Experimental investigations supported by FEM simulations show that adding high-index nanoparticles increases the refractive index contrast of otherwise incomplete photonic band gap (PBG) Blue Phase I, driving it towards a complete PBG system.</description><subject>Crystals</subject><subject>Electric fields</subject><subject>Finite element method</subject><subject>Incident light</subject><subject>Light refraction</subject><subject>Liquid crystals</subject><subject>Nanoparticles</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Reflection</subject><subject>Refractivity</subject><subject>Simulation</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LwzAQB_AiCs7pi-9CwBcRqknTps2jzN8MBZnP5ZqkW0qWdEmr7r-3czLBpzuOD8fxvSg6JfiKYMqvJbUeU8pYsxeNEpzimNI82d_1LD2MjkJoMGacMjqKmpn7BC8DEm7ZGtUp1C5c56wWqAIr0RxapC0CtNDzBfKq9iA6_aGGoVRfyIJ1LfhOC6Ni6VolUWX6zRIIChm96rVEwq9DB-Y4OqjBBHXyW8fR-_3dbPIYT18fniY301hQknYxoaSGQnLKZSWAK1wPp4qkIiJhVc5wDpCLIqslcJbwNEmBZEJkglcVq3ld03F0sd3berfqVejKpQ5CGQNWuT6UScEwIwXlZKDn_2jjem-H6wbFMWVZRvJBXW6V8C6EIYOy9XoJfl0SXG5iL2_py9tP7M8DPttiH8TO_b2FfgM4DIBk</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>Khatun, Nurjahan</creator><creator>Sridurai, Vimala</creator><creator>Nair, Geetha G</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9071-6971</orcidid><orcidid>https://orcid.org/0000-0003-1006-3315</orcidid></search><sort><creationdate>20231116</creationdate><title>Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal</title><author>Khatun, Nurjahan ; Sridurai, Vimala ; Nair, Geetha G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-131fa8d939dbca9e0f693c2b1c26b7607aa7c85fda9629424a15cc5c9bb6f9ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crystals</topic><topic>Electric fields</topic><topic>Finite element method</topic><topic>Incident light</topic><topic>Light refraction</topic><topic>Liquid crystals</topic><topic>Nanoparticles</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Reflection</topic><topic>Refractivity</topic><topic>Simulation</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatun, Nurjahan</creatorcontrib><creatorcontrib>Sridurai, Vimala</creatorcontrib><creatorcontrib>Nair, Geetha G</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatun, Nurjahan</au><au>Sridurai, Vimala</au><au>Nair, Geetha G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal</atitle><jtitle>Nanoscale</jtitle><date>2023-11-16</date><risdate>2023</risdate><volume>15</volume><issue>44</issue><spage>1788</spage><epage>17817</epage><pages>1788-17817</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (&lt;0.1). The present work attempts to drive a cubic BP towards a complete PBG via a simple approach of high refractive index nanoparticle-doping. The photonic band diagrams and reflection spectra of the nanoparticle-doped BP simulated using the finite element method show an increased PBG width, a parameter that quantifies the complete PBG. The reflection spectra obtained from UV-Vis-NIR spectroscopy show an increase (by a factor of &gt;2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light. Experimental investigations supported by FEM simulations show that adding high-index nanoparticles increases the refractive index contrast of otherwise incomplete photonic band gap (PBG) Blue Phase I, driving it towards a complete PBG system.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr03366j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9071-6971</orcidid><orcidid>https://orcid.org/0000-0003-1006-3315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-11, Vol.15 (44), p.1788-17817
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_D3NR03366J
source Royal Society Of Chemistry Journals 2008-
subjects Crystals
Electric fields
Finite element method
Incident light
Light refraction
Liquid crystals
Nanoparticles
Photonic band gaps
Photonic crystals
Reflection
Refractivity
Simulation
Spectra
Spectrum analysis
title Towards complete photonic band gap in a high refractive index nanoparticle-doped blue phase liquid crystal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20complete%20photonic%20band%20gap%20in%20a%20high%20refractive%20index%20nanoparticle-doped%20blue%20phase%20liquid%20crystal&rft.jtitle=Nanoscale&rft.au=Khatun,%20Nurjahan&rft.date=2023-11-16&rft.volume=15&rft.issue=44&rft.spage=1788&rft.epage=17817&rft.pages=1788-17817&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr03366j&rft_dat=%3Cproquest_cross%3E2860618391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890365517&rft_id=info:pmid/&rfr_iscdi=true