Ferroelectric synaptic devices based on CMOS-compatible HfAlO x for neuromorphic and reservoir computing applications
The hafnium oxide-based ferroelectric tunnel junction (FTJ) has been actively researched because of desirable advantages such as low power and CMOS compatibility to operate as a memristor. In the case of HfAlO (HAO), the remanent polarization ( ) value is high and the atomic radius of Al is smaller...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-05, Vol.15 (18), p.8366-8376 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8376 |
---|---|
container_issue | 18 |
container_start_page | 8366 |
container_title | Nanoscale |
container_volume | 15 |
creator | Kim, Dahye Kim, Jihyung Yun, Seokyeon Lee, Jungwoo Seo, Euncho Kim, Sungjun |
description | The hafnium oxide-based ferroelectric tunnel junction (FTJ) has been actively researched because of desirable advantages such as low power and CMOS compatibility to operate as a memristor. In the case of HfAlO
(HAO), the remanent polarization (
) value is high and the atomic radius of Al is smaller than that of Hf; therefore, ferroelectricity can be better induced without mechanical force. In this paper, we propose an FTJ using HAO as a ferroelectric layer through electrical analysis and experiments; further, we experimentally demonstrate its capability as a synaptic device. Moreover, we evaluate the maximum 2
and TER value of the device according to the difference in conditions of thickness and cell area. The optimized device conditions are analyzed, and a large value of 2
(>∼43 μC cm
) is obtained. Furthermore, we show that paired-pulse facilitation, paired-pulse depression, and spike-timing-dependent plasticity can be utilized in HAO-based FTJs. In addition, this study demonstrates the use of an FTJ device as a physical reservoir to implement reservoir computing. Through a series of processes, the synaptic properties of FTJs are verified for the feasibility of their implementation as an artificial synaptic device. |
doi_str_mv | 10.1039/D3NR01294H |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NR01294H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37092534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c994-85bec31420267f11dedcc0f3439efd4e5b8354fcc1c28c9ffbb32b66cd8dee363</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMobk5v_AGSa6Gar3bN5ZjOCdOB7r40yYlG2qYk7XD_3o7pvDrvxfO8cF6Erim5o4TL-wf--kYok2J5gsaMCJJwPmWnx5yJEbqI8YuQTPKMn6MRnxLJUi7GqF9ACB4q0F1wGsddU7bdEAxsnYaIVRnBYN_g-cv6PdG-bsvOqQrw0s6qNf7G1gfcQB987UP7OZhlY3CACGHrXcB7o-9c84HLtq2cHmzfxEt0ZssqwtXvnaDN4nEzXyar9dPzfLZKtJQiyVMFmlPBCMumllIDRmtiueASrBGQqpynwmpNNcu1tFYpzlSWaZMbgOHTCbo91OrgYwxgiza4ugy7gpJiP13xP90A3xzgtlc1mCP6txX_AVw0bEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ferroelectric synaptic devices based on CMOS-compatible HfAlO x for neuromorphic and reservoir computing applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, Dahye ; Kim, Jihyung ; Yun, Seokyeon ; Lee, Jungwoo ; Seo, Euncho ; Kim, Sungjun</creator><creatorcontrib>Kim, Dahye ; Kim, Jihyung ; Yun, Seokyeon ; Lee, Jungwoo ; Seo, Euncho ; Kim, Sungjun</creatorcontrib><description>The hafnium oxide-based ferroelectric tunnel junction (FTJ) has been actively researched because of desirable advantages such as low power and CMOS compatibility to operate as a memristor. In the case of HfAlO
(HAO), the remanent polarization (
) value is high and the atomic radius of Al is smaller than that of Hf; therefore, ferroelectricity can be better induced without mechanical force. In this paper, we propose an FTJ using HAO as a ferroelectric layer through electrical analysis and experiments; further, we experimentally demonstrate its capability as a synaptic device. Moreover, we evaluate the maximum 2
and TER value of the device according to the difference in conditions of thickness and cell area. The optimized device conditions are analyzed, and a large value of 2
(>∼43 μC cm
) is obtained. Furthermore, we show that paired-pulse facilitation, paired-pulse depression, and spike-timing-dependent plasticity can be utilized in HAO-based FTJs. In addition, this study demonstrates the use of an FTJ device as a physical reservoir to implement reservoir computing. Through a series of processes, the synaptic properties of FTJs are verified for the feasibility of their implementation as an artificial synaptic device.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/D3NR01294H</identifier><identifier>PMID: 37092534</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2023-05, Vol.15 (18), p.8366-8376</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c994-85bec31420267f11dedcc0f3439efd4e5b8354fcc1c28c9ffbb32b66cd8dee363</citedby><cites>FETCH-LOGICAL-c994-85bec31420267f11dedcc0f3439efd4e5b8354fcc1c28c9ffbb32b66cd8dee363</cites><orcidid>0000-0002-9873-2474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37092534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dahye</creatorcontrib><creatorcontrib>Kim, Jihyung</creatorcontrib><creatorcontrib>Yun, Seokyeon</creatorcontrib><creatorcontrib>Lee, Jungwoo</creatorcontrib><creatorcontrib>Seo, Euncho</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><title>Ferroelectric synaptic devices based on CMOS-compatible HfAlO x for neuromorphic and reservoir computing applications</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The hafnium oxide-based ferroelectric tunnel junction (FTJ) has been actively researched because of desirable advantages such as low power and CMOS compatibility to operate as a memristor. In the case of HfAlO
(HAO), the remanent polarization (
) value is high and the atomic radius of Al is smaller than that of Hf; therefore, ferroelectricity can be better induced without mechanical force. In this paper, we propose an FTJ using HAO as a ferroelectric layer through electrical analysis and experiments; further, we experimentally demonstrate its capability as a synaptic device. Moreover, we evaluate the maximum 2
and TER value of the device according to the difference in conditions of thickness and cell area. The optimized device conditions are analyzed, and a large value of 2
(>∼43 μC cm
) is obtained. Furthermore, we show that paired-pulse facilitation, paired-pulse depression, and spike-timing-dependent plasticity can be utilized in HAO-based FTJs. In addition, this study demonstrates the use of an FTJ device as a physical reservoir to implement reservoir computing. Through a series of processes, the synaptic properties of FTJs are verified for the feasibility of their implementation as an artificial synaptic device.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMobk5v_AGSa6Gar3bN5ZjOCdOB7r40yYlG2qYk7XD_3o7pvDrvxfO8cF6Erim5o4TL-wf--kYok2J5gsaMCJJwPmWnx5yJEbqI8YuQTPKMn6MRnxLJUi7GqF9ACB4q0F1wGsddU7bdEAxsnYaIVRnBYN_g-cv6PdG-bsvOqQrw0s6qNf7G1gfcQB987UP7OZhlY3CACGHrXcB7o-9c84HLtq2cHmzfxEt0ZssqwtXvnaDN4nEzXyar9dPzfLZKtJQiyVMFmlPBCMumllIDRmtiueASrBGQqpynwmpNNcu1tFYpzlSWaZMbgOHTCbo91OrgYwxgiza4ugy7gpJiP13xP90A3xzgtlc1mCP6txX_AVw0bEg</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>Kim, Dahye</creator><creator>Kim, Jihyung</creator><creator>Yun, Seokyeon</creator><creator>Lee, Jungwoo</creator><creator>Seo, Euncho</creator><creator>Kim, Sungjun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9873-2474</orcidid></search><sort><creationdate>20230511</creationdate><title>Ferroelectric synaptic devices based on CMOS-compatible HfAlO x for neuromorphic and reservoir computing applications</title><author>Kim, Dahye ; Kim, Jihyung ; Yun, Seokyeon ; Lee, Jungwoo ; Seo, Euncho ; Kim, Sungjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c994-85bec31420267f11dedcc0f3439efd4e5b8354fcc1c28c9ffbb32b66cd8dee363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dahye</creatorcontrib><creatorcontrib>Kim, Jihyung</creatorcontrib><creatorcontrib>Yun, Seokyeon</creatorcontrib><creatorcontrib>Lee, Jungwoo</creatorcontrib><creatorcontrib>Seo, Euncho</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dahye</au><au>Kim, Jihyung</au><au>Yun, Seokyeon</au><au>Lee, Jungwoo</au><au>Seo, Euncho</au><au>Kim, Sungjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric synaptic devices based on CMOS-compatible HfAlO x for neuromorphic and reservoir computing applications</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-05-11</date><risdate>2023</risdate><volume>15</volume><issue>18</issue><spage>8366</spage><epage>8376</epage><pages>8366-8376</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The hafnium oxide-based ferroelectric tunnel junction (FTJ) has been actively researched because of desirable advantages such as low power and CMOS compatibility to operate as a memristor. In the case of HfAlO
(HAO), the remanent polarization (
) value is high and the atomic radius of Al is smaller than that of Hf; therefore, ferroelectricity can be better induced without mechanical force. In this paper, we propose an FTJ using HAO as a ferroelectric layer through electrical analysis and experiments; further, we experimentally demonstrate its capability as a synaptic device. Moreover, we evaluate the maximum 2
and TER value of the device according to the difference in conditions of thickness and cell area. The optimized device conditions are analyzed, and a large value of 2
(>∼43 μC cm
) is obtained. Furthermore, we show that paired-pulse facilitation, paired-pulse depression, and spike-timing-dependent plasticity can be utilized in HAO-based FTJs. In addition, this study demonstrates the use of an FTJ device as a physical reservoir to implement reservoir computing. Through a series of processes, the synaptic properties of FTJs are verified for the feasibility of their implementation as an artificial synaptic device.</abstract><cop>England</cop><pmid>37092534</pmid><doi>10.1039/D3NR01294H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9873-2474</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-05, Vol.15 (18), p.8366-8376 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3NR01294H |
source | Royal Society Of Chemistry Journals 2008- |
title | Ferroelectric synaptic devices based on CMOS-compatible HfAlO x for neuromorphic and reservoir computing applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T13%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20synaptic%20devices%20based%20on%20CMOS-compatible%20HfAlO%20x%20for%20neuromorphic%20and%20reservoir%20computing%20applications&rft.jtitle=Nanoscale&rft.au=Kim,%20Dahye&rft.date=2023-05-11&rft.volume=15&rft.issue=18&rft.spage=8366&rft.epage=8376&rft.pages=8366-8376&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/D3NR01294H&rft_dat=%3Cpubmed_cross%3E37092534%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37092534&rfr_iscdi=true |