High-sensitivity NaYF 4 :Yb 3+ /Ho 3+ /Tm 3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels

Non-contact optical temperature sensors are highly sought after by researchers due to their satisfactory temperature resolution (δ( ) < 0.1 °C), high relative thermal sensitivity ( > 1% °C ), fast temporal response ( < 0.1 s), and long-term optical stability. In this study, NaYF :Yb /Ho /Tm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-07, Vol.15 (26), p.11179-11189
Hauptverfasser: Cheng, Zhenlong, Meng, Mingzhou, Wang, Jiaoyu, Li, Zhuoyue, He, Jiao, Liang, Hao, Qiao, Xin, Liu, Yuanli, Ou, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11189
container_issue 26
container_start_page 11179
container_title Nanoscale
container_volume 15
creator Cheng, Zhenlong
Meng, Mingzhou
Wang, Jiaoyu
Li, Zhuoyue
He, Jiao
Liang, Hao
Qiao, Xin
Liu, Yuanli
Ou, Jun
description Non-contact optical temperature sensors are highly sought after by researchers due to their satisfactory temperature resolution (δ( ) < 0.1 °C), high relative thermal sensitivity ( > 1% °C ), fast temporal response ( < 0.1 s), and long-term optical stability. In this study, NaYF :Yb /Ho /Tm upconversion nanoparticles were prepared by a solvothermal method, and their crystal structure, microscopic morphology, and luminescence mechanism, together with the temperature sensing properties of the specimens, were investigated. Under 980 nm laser excitation, the specimens exhibited strong upconversion luminescence, and the emission peaks corresponded to the characteristic energy level jumps of Ho and Tm , respectively. The temperature-dependent luminescence spectra of the samples were investigated based on the fluorescence intensity ratio (FIR) technique over a temperature gradient of 295-495 K. The samples are based on thermally coupled energy levels (TCLs: G → H (Tm )) and non-thermally coupled energy levels (NTCLs: F → H (Tm ) and F → I (Ho ), F → H (Tm ) and G → H (Tm ), F → H (Tm ) and F → I (Ho ), F → H (Tm ) and F → I (Ho )) for temperature sensing performance. The maximum absolute sensitivity ( ), relative sensitivity ( ), and minimum temperature resolution δ( ) were found to be 0.0126 K (495 K), 1.7966% K (345 K), and 0.0167 K, respectively, which are better than those of most sensing materials, and the simultaneous action of multiple coupling energy levels can further improve the temperature precision. This study indicates that the sample has a good value for optical temperature measurement and also provides new ideas for the exploration of other high-quality optical temperature sensing materials.
doi_str_mv 10.1039/d3nr00893b
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NR00893B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37340955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c995-d930ea456fe787198d8ba50ef0fd60a69255c89c200e4a3412effb0df46557a63</originalsourceid><addsrcrecordid>eNplkMtOwzAQRS0EoqWw4QOQ16DQSRw7MTsolCJVRULddFU58bgNSpzITivlU_hb-gA2LEZnNHN1F4eQ6xDuQ2ByqJl1AKlk2QnpRxBDwFgSnf7tIu6RC-8_AYRkgp2THktYDJLzPvmaFKt14NH6oi22RdvRmVqMaUwfFhlld3Q4qQ-YV3s069rvxnlqakfrpi1yVdIWqwadajcO6aHJrmimPGpaW9qu0VWqLDua15um3B2V1dTWNvj_QYtu1dESt1j6S3JmVOnx6ocDMh-_zEeTYPr--jZ6nAa5lDzQkgGqmAuDSZqEMtVppjigAaMFKCEjzvNU5hEAxorFYYTGZKBNLDhPlGADcnuszV3tvUOzbFxRKdctQ1ju9S6f2ezjoPdpF745hptNVqH-i_76ZN-1z3ZG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-sensitivity NaYF 4 :Yb 3+ /Ho 3+ /Tm 3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Cheng, Zhenlong ; Meng, Mingzhou ; Wang, Jiaoyu ; Li, Zhuoyue ; He, Jiao ; Liang, Hao ; Qiao, Xin ; Liu, Yuanli ; Ou, Jun</creator><creatorcontrib>Cheng, Zhenlong ; Meng, Mingzhou ; Wang, Jiaoyu ; Li, Zhuoyue ; He, Jiao ; Liang, Hao ; Qiao, Xin ; Liu, Yuanli ; Ou, Jun</creatorcontrib><description>Non-contact optical temperature sensors are highly sought after by researchers due to their satisfactory temperature resolution (δ( ) &lt; 0.1 °C), high relative thermal sensitivity ( &gt; 1% °C ), fast temporal response ( &lt; 0.1 s), and long-term optical stability. In this study, NaYF :Yb /Ho /Tm upconversion nanoparticles were prepared by a solvothermal method, and their crystal structure, microscopic morphology, and luminescence mechanism, together with the temperature sensing properties of the specimens, were investigated. Under 980 nm laser excitation, the specimens exhibited strong upconversion luminescence, and the emission peaks corresponded to the characteristic energy level jumps of Ho and Tm , respectively. The temperature-dependent luminescence spectra of the samples were investigated based on the fluorescence intensity ratio (FIR) technique over a temperature gradient of 295-495 K. The samples are based on thermally coupled energy levels (TCLs: G → H (Tm )) and non-thermally coupled energy levels (NTCLs: F → H (Tm ) and F → I (Ho ), F → H (Tm ) and G → H (Tm ), F → H (Tm ) and F → I (Ho ), F → H (Tm ) and F → I (Ho )) for temperature sensing performance. The maximum absolute sensitivity ( ), relative sensitivity ( ), and minimum temperature resolution δ( ) were found to be 0.0126 K (495 K), 1.7966% K (345 K), and 0.0167 K, respectively, which are better than those of most sensing materials, and the simultaneous action of multiple coupling energy levels can further improve the temperature precision. This study indicates that the sample has a good value for optical temperature measurement and also provides new ideas for the exploration of other high-quality optical temperature sensing materials.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr00893b</identifier><identifier>PMID: 37340955</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2023-07, Vol.15 (26), p.11179-11189</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c995-d930ea456fe787198d8ba50ef0fd60a69255c89c200e4a3412effb0df46557a63</citedby><cites>FETCH-LOGICAL-c995-d930ea456fe787198d8ba50ef0fd60a69255c89c200e4a3412effb0df46557a63</cites><orcidid>0000-0002-8554-2698 ; 0000-0002-6596-4383 ; 0000-0002-8965-6553 ; 0000-0003-3048-8740 ; 0000-0002-0509-5665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37340955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Zhenlong</creatorcontrib><creatorcontrib>Meng, Mingzhou</creatorcontrib><creatorcontrib>Wang, Jiaoyu</creatorcontrib><creatorcontrib>Li, Zhuoyue</creatorcontrib><creatorcontrib>He, Jiao</creatorcontrib><creatorcontrib>Liang, Hao</creatorcontrib><creatorcontrib>Qiao, Xin</creatorcontrib><creatorcontrib>Liu, Yuanli</creatorcontrib><creatorcontrib>Ou, Jun</creatorcontrib><title>High-sensitivity NaYF 4 :Yb 3+ /Ho 3+ /Tm 3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Non-contact optical temperature sensors are highly sought after by researchers due to their satisfactory temperature resolution (δ( ) &lt; 0.1 °C), high relative thermal sensitivity ( &gt; 1% °C ), fast temporal response ( &lt; 0.1 s), and long-term optical stability. In this study, NaYF :Yb /Ho /Tm upconversion nanoparticles were prepared by a solvothermal method, and their crystal structure, microscopic morphology, and luminescence mechanism, together with the temperature sensing properties of the specimens, were investigated. Under 980 nm laser excitation, the specimens exhibited strong upconversion luminescence, and the emission peaks corresponded to the characteristic energy level jumps of Ho and Tm , respectively. The temperature-dependent luminescence spectra of the samples were investigated based on the fluorescence intensity ratio (FIR) technique over a temperature gradient of 295-495 K. The samples are based on thermally coupled energy levels (TCLs: G → H (Tm )) and non-thermally coupled energy levels (NTCLs: F → H (Tm ) and F → I (Ho ), F → H (Tm ) and G → H (Tm ), F → H (Tm ) and F → I (Ho ), F → H (Tm ) and F → I (Ho )) for temperature sensing performance. The maximum absolute sensitivity ( ), relative sensitivity ( ), and minimum temperature resolution δ( ) were found to be 0.0126 K (495 K), 1.7966% K (345 K), and 0.0167 K, respectively, which are better than those of most sensing materials, and the simultaneous action of multiple coupling energy levels can further improve the temperature precision. This study indicates that the sample has a good value for optical temperature measurement and also provides new ideas for the exploration of other high-quality optical temperature sensing materials.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNplkMtOwzAQRS0EoqWw4QOQ16DQSRw7MTsolCJVRULddFU58bgNSpzITivlU_hb-gA2LEZnNHN1F4eQ6xDuQ2ByqJl1AKlk2QnpRxBDwFgSnf7tIu6RC-8_AYRkgp2THktYDJLzPvmaFKt14NH6oi22RdvRmVqMaUwfFhlld3Q4qQ-YV3s069rvxnlqakfrpi1yVdIWqwadajcO6aHJrmimPGpaW9qu0VWqLDua15um3B2V1dTWNvj_QYtu1dESt1j6S3JmVOnx6ocDMh-_zEeTYPr--jZ6nAa5lDzQkgGqmAuDSZqEMtVppjigAaMFKCEjzvNU5hEAxorFYYTGZKBNLDhPlGADcnuszV3tvUOzbFxRKdctQ1ju9S6f2ezjoPdpF745hptNVqH-i_76ZN-1z3ZG</recordid><startdate>20230706</startdate><enddate>20230706</enddate><creator>Cheng, Zhenlong</creator><creator>Meng, Mingzhou</creator><creator>Wang, Jiaoyu</creator><creator>Li, Zhuoyue</creator><creator>He, Jiao</creator><creator>Liang, Hao</creator><creator>Qiao, Xin</creator><creator>Liu, Yuanli</creator><creator>Ou, Jun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8554-2698</orcidid><orcidid>https://orcid.org/0000-0002-6596-4383</orcidid><orcidid>https://orcid.org/0000-0002-8965-6553</orcidid><orcidid>https://orcid.org/0000-0003-3048-8740</orcidid><orcidid>https://orcid.org/0000-0002-0509-5665</orcidid></search><sort><creationdate>20230706</creationdate><title>High-sensitivity NaYF 4 :Yb 3+ /Ho 3+ /Tm 3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels</title><author>Cheng, Zhenlong ; Meng, Mingzhou ; Wang, Jiaoyu ; Li, Zhuoyue ; He, Jiao ; Liang, Hao ; Qiao, Xin ; Liu, Yuanli ; Ou, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c995-d930ea456fe787198d8ba50ef0fd60a69255c89c200e4a3412effb0df46557a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zhenlong</creatorcontrib><creatorcontrib>Meng, Mingzhou</creatorcontrib><creatorcontrib>Wang, Jiaoyu</creatorcontrib><creatorcontrib>Li, Zhuoyue</creatorcontrib><creatorcontrib>He, Jiao</creatorcontrib><creatorcontrib>Liang, Hao</creatorcontrib><creatorcontrib>Qiao, Xin</creatorcontrib><creatorcontrib>Liu, Yuanli</creatorcontrib><creatorcontrib>Ou, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zhenlong</au><au>Meng, Mingzhou</au><au>Wang, Jiaoyu</au><au>Li, Zhuoyue</au><au>He, Jiao</au><au>Liang, Hao</au><au>Qiao, Xin</au><au>Liu, Yuanli</au><au>Ou, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-sensitivity NaYF 4 :Yb 3+ /Ho 3+ /Tm 3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-07-06</date><risdate>2023</risdate><volume>15</volume><issue>26</issue><spage>11179</spage><epage>11189</epage><pages>11179-11189</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Non-contact optical temperature sensors are highly sought after by researchers due to their satisfactory temperature resolution (δ( ) &lt; 0.1 °C), high relative thermal sensitivity ( &gt; 1% °C ), fast temporal response ( &lt; 0.1 s), and long-term optical stability. In this study, NaYF :Yb /Ho /Tm upconversion nanoparticles were prepared by a solvothermal method, and their crystal structure, microscopic morphology, and luminescence mechanism, together with the temperature sensing properties of the specimens, were investigated. Under 980 nm laser excitation, the specimens exhibited strong upconversion luminescence, and the emission peaks corresponded to the characteristic energy level jumps of Ho and Tm , respectively. The temperature-dependent luminescence spectra of the samples were investigated based on the fluorescence intensity ratio (FIR) technique over a temperature gradient of 295-495 K. The samples are based on thermally coupled energy levels (TCLs: G → H (Tm )) and non-thermally coupled energy levels (NTCLs: F → H (Tm ) and F → I (Ho ), F → H (Tm ) and G → H (Tm ), F → H (Tm ) and F → I (Ho ), F → H (Tm ) and F → I (Ho )) for temperature sensing performance. The maximum absolute sensitivity ( ), relative sensitivity ( ), and minimum temperature resolution δ( ) were found to be 0.0126 K (495 K), 1.7966% K (345 K), and 0.0167 K, respectively, which are better than those of most sensing materials, and the simultaneous action of multiple coupling energy levels can further improve the temperature precision. This study indicates that the sample has a good value for optical temperature measurement and also provides new ideas for the exploration of other high-quality optical temperature sensing materials.</abstract><cop>England</cop><pmid>37340955</pmid><doi>10.1039/d3nr00893b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8554-2698</orcidid><orcidid>https://orcid.org/0000-0002-6596-4383</orcidid><orcidid>https://orcid.org/0000-0002-8965-6553</orcidid><orcidid>https://orcid.org/0000-0003-3048-8740</orcidid><orcidid>https://orcid.org/0000-0002-0509-5665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-07, Vol.15 (26), p.11179-11189
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_D3NR00893B
source Royal Society Of Chemistry Journals 2008-
title High-sensitivity NaYF 4 :Yb 3+ /Ho 3+ /Tm 3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-sensitivity%20NaYF%204%20:Yb%203+%20/Ho%203+%20/Tm%203+%20phosphors%20for%20optical%20temperature%20sensing%20based%20on%20thermally%20coupled%20and%20non-thermally%20coupled%20energy%20levels&rft.jtitle=Nanoscale&rft.au=Cheng,%20Zhenlong&rft.date=2023-07-06&rft.volume=15&rft.issue=26&rft.spage=11179&rft.epage=11189&rft.pages=11179-11189&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr00893b&rft_dat=%3Cpubmed_cross%3E37340955%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37340955&rfr_iscdi=true