Compartmentalized drug localization studies in extracellular vesicles for anticancer therapy

In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale advances 2023-12, Vol.5 (24), p.683-6836
Hauptverfasser: Pitchaimani, Arunkumar, Ferreira, Miguel, Palange, Annalisa, Pannuzzo, Martina, De Mei, Claudia, Spano, Raffaele, Marotta, Roberto, Pelacho, Beatriz, Prosper, Felipe, Decuzzi, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6836
container_issue 24
container_start_page 683
container_title Nanoscale advances
container_volume 5
creator Pitchaimani, Arunkumar
Ferreira, Miguel
Palange, Annalisa
Pannuzzo, Martina
De Mei, Claudia
Spano, Raffaele
Marotta, Roberto
Pelacho, Beatriz
Prosper, Felipe
Decuzzi, Paolo
description In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight, hydrophilicity, lipophilicity, and so on). As a proof of concept, here we demonstrated the importance of drug compartmentalization in EVs as an additional parameter affecting the therapeutic potential of drug-loaded EVs. In human adipose mesenchymal stem cell (hADSC) derived EVs, we performed a comparative drug loading analysis using two formulations of the same chemotherapeutic molecule - free doxorubicin (DOX) and 1,2-distearoyl- sn-glycero -3-phosphoethanolamine (DSPE) lipid-conjugated doxorubicin (L-DOX) - to enhance the intracellular uptake and therapeutic efficacy. By nano surface energy transfer (NSET) and molecular simulation techniques, along with cryo-TEM analysis, we confirmed the differential compartmentalization of these two molecules in hADSC EVs. L-DOX was preferentially adsorbed onto the surface of the EV, due to its higher lipophilicity, whereas free DOX was mostly encapsulated within the EV core. Also, the L-DOX loaded EV (LDOX@EV) returned an almost three-fold higher DOX content as compared to the free DOX loaded EV (DOX@EV), for a given input mass of drug. Based on the cellular investigations, L-DOX@EV showed higher cell internalization than DOX@EV. Also, in comparison with free L-DOX, the magnitude of therapeutic potential enhancement displayed by the surface compartmentalized L-DOX@EV is highly promising and can be exploited to overcome the sensitivity of many potential drugs, which are impermeable in nature. Overall, this study illustrates the significance of drug compartmentalization in EVs and how this could affect intracellular delivery, loading efficiency, and therapeutic effect. This will further lay the foundation for the future systematic investigation of EV-based biotherapeutic delivery platforms for personalized medicine. Drug compartmentalization in extracellular vesicles for anticancer therapy.
doi_str_mv 10.1039/d3na00207a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NA00207A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899370700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-afa889f64c4e8ed99e9e73ebaddbdf6df21cb9bb2ff359e439a4da13f2e565b3</originalsourceid><addsrcrecordid>eNpVkUtLAzEUhYMotqgb98osRahmJvPKSkp9guimSyHcSW5sZGZSk0xRf71TW2td3VzOx0lODiHHMb2IKeOXirVAaUIL2CHDJIvzEU0Y3d06D8iR92-0h-I0TQu-TwaspBmnLBuSl4lt5uBCg22A2nyhipTrXqPayuUKwdg28qFTBn1k2gg_ggOJdd3V4KIFeiPrXtHWRdAGI6GV6KIwQwfzz0Oyp6H2eLSeB2R6ezOd3I8en-8eJuPHkWQ5DSPQUJZc56lMsUTFOXIsGFagVKV0rnQSy4pXVaI1yzimjEOqIGY6wSzPKnZArla2865qUMk-ioNazJ1pwH0KC0b8V1ozE692IWKa85xnSe9wtnZw9r1DH0Rj_DIltGg7L5KSc1bQgtIePV-h0lnvHerNPTEVy0bENXsa_zQy7uHT7Zdt0N__74GTFeC83Kh_lbJvnYCUxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899370700</pqid></control><display><type>article</type><title>Compartmentalized drug localization studies in extracellular vesicles for anticancer therapy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Pitchaimani, Arunkumar ; Ferreira, Miguel ; Palange, Annalisa ; Pannuzzo, Martina ; De Mei, Claudia ; Spano, Raffaele ; Marotta, Roberto ; Pelacho, Beatriz ; Prosper, Felipe ; Decuzzi, Paolo</creator><creatorcontrib>Pitchaimani, Arunkumar ; Ferreira, Miguel ; Palange, Annalisa ; Pannuzzo, Martina ; De Mei, Claudia ; Spano, Raffaele ; Marotta, Roberto ; Pelacho, Beatriz ; Prosper, Felipe ; Decuzzi, Paolo</creatorcontrib><description>In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight, hydrophilicity, lipophilicity, and so on). As a proof of concept, here we demonstrated the importance of drug compartmentalization in EVs as an additional parameter affecting the therapeutic potential of drug-loaded EVs. In human adipose mesenchymal stem cell (hADSC) derived EVs, we performed a comparative drug loading analysis using two formulations of the same chemotherapeutic molecule - free doxorubicin (DOX) and 1,2-distearoyl- sn-glycero -3-phosphoethanolamine (DSPE) lipid-conjugated doxorubicin (L-DOX) - to enhance the intracellular uptake and therapeutic efficacy. By nano surface energy transfer (NSET) and molecular simulation techniques, along with cryo-TEM analysis, we confirmed the differential compartmentalization of these two molecules in hADSC EVs. L-DOX was preferentially adsorbed onto the surface of the EV, due to its higher lipophilicity, whereas free DOX was mostly encapsulated within the EV core. Also, the L-DOX loaded EV (LDOX@EV) returned an almost three-fold higher DOX content as compared to the free DOX loaded EV (DOX@EV), for a given input mass of drug. Based on the cellular investigations, L-DOX@EV showed higher cell internalization than DOX@EV. Also, in comparison with free L-DOX, the magnitude of therapeutic potential enhancement displayed by the surface compartmentalized L-DOX@EV is highly promising and can be exploited to overcome the sensitivity of many potential drugs, which are impermeable in nature. Overall, this study illustrates the significance of drug compartmentalization in EVs and how this could affect intracellular delivery, loading efficiency, and therapeutic effect. This will further lay the foundation for the future systematic investigation of EV-based biotherapeutic delivery platforms for personalized medicine. Drug compartmentalization in extracellular vesicles for anticancer therapy.</description><identifier>ISSN: 2516-0230</identifier><identifier>EISSN: 2516-0230</identifier><identifier>DOI: 10.1039/d3na00207a</identifier><identifier>PMID: 38059035</identifier><language>eng</language><publisher>England: RSC</publisher><subject>Chemistry</subject><ispartof>Nanoscale advances, 2023-12, Vol.5 (24), p.683-6836</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2023 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-afa889f64c4e8ed99e9e73ebaddbdf6df21cb9bb2ff359e439a4da13f2e565b3</cites><orcidid>0000-0003-2664-7913 ; 0000-0001-8629-0173 ; 0000-0002-1560-3571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696952/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696952/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38059035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pitchaimani, Arunkumar</creatorcontrib><creatorcontrib>Ferreira, Miguel</creatorcontrib><creatorcontrib>Palange, Annalisa</creatorcontrib><creatorcontrib>Pannuzzo, Martina</creatorcontrib><creatorcontrib>De Mei, Claudia</creatorcontrib><creatorcontrib>Spano, Raffaele</creatorcontrib><creatorcontrib>Marotta, Roberto</creatorcontrib><creatorcontrib>Pelacho, Beatriz</creatorcontrib><creatorcontrib>Prosper, Felipe</creatorcontrib><creatorcontrib>Decuzzi, Paolo</creatorcontrib><title>Compartmentalized drug localization studies in extracellular vesicles for anticancer therapy</title><title>Nanoscale advances</title><addtitle>Nanoscale Adv</addtitle><description>In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight, hydrophilicity, lipophilicity, and so on). As a proof of concept, here we demonstrated the importance of drug compartmentalization in EVs as an additional parameter affecting the therapeutic potential of drug-loaded EVs. In human adipose mesenchymal stem cell (hADSC) derived EVs, we performed a comparative drug loading analysis using two formulations of the same chemotherapeutic molecule - free doxorubicin (DOX) and 1,2-distearoyl- sn-glycero -3-phosphoethanolamine (DSPE) lipid-conjugated doxorubicin (L-DOX) - to enhance the intracellular uptake and therapeutic efficacy. By nano surface energy transfer (NSET) and molecular simulation techniques, along with cryo-TEM analysis, we confirmed the differential compartmentalization of these two molecules in hADSC EVs. L-DOX was preferentially adsorbed onto the surface of the EV, due to its higher lipophilicity, whereas free DOX was mostly encapsulated within the EV core. Also, the L-DOX loaded EV (LDOX@EV) returned an almost three-fold higher DOX content as compared to the free DOX loaded EV (DOX@EV), for a given input mass of drug. Based on the cellular investigations, L-DOX@EV showed higher cell internalization than DOX@EV. Also, in comparison with free L-DOX, the magnitude of therapeutic potential enhancement displayed by the surface compartmentalized L-DOX@EV is highly promising and can be exploited to overcome the sensitivity of many potential drugs, which are impermeable in nature. Overall, this study illustrates the significance of drug compartmentalization in EVs and how this could affect intracellular delivery, loading efficiency, and therapeutic effect. This will further lay the foundation for the future systematic investigation of EV-based biotherapeutic delivery platforms for personalized medicine. Drug compartmentalization in extracellular vesicles for anticancer therapy.</description><subject>Chemistry</subject><issn>2516-0230</issn><issn>2516-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkUtLAzEUhYMotqgb98osRahmJvPKSkp9guimSyHcSW5sZGZSk0xRf71TW2td3VzOx0lODiHHMb2IKeOXirVAaUIL2CHDJIvzEU0Y3d06D8iR92-0h-I0TQu-TwaspBmnLBuSl4lt5uBCg22A2nyhipTrXqPayuUKwdg28qFTBn1k2gg_ggOJdd3V4KIFeiPrXtHWRdAGI6GV6KIwQwfzz0Oyp6H2eLSeB2R6ezOd3I8en-8eJuPHkWQ5DSPQUJZc56lMsUTFOXIsGFagVKV0rnQSy4pXVaI1yzimjEOqIGY6wSzPKnZArla2865qUMk-ioNazJ1pwH0KC0b8V1ozE692IWKa85xnSe9wtnZw9r1DH0Rj_DIltGg7L5KSc1bQgtIePV-h0lnvHerNPTEVy0bENXsa_zQy7uHT7Zdt0N__74GTFeC83Kh_lbJvnYCUxw</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Pitchaimani, Arunkumar</creator><creator>Ferreira, Miguel</creator><creator>Palange, Annalisa</creator><creator>Pannuzzo, Martina</creator><creator>De Mei, Claudia</creator><creator>Spano, Raffaele</creator><creator>Marotta, Roberto</creator><creator>Pelacho, Beatriz</creator><creator>Prosper, Felipe</creator><creator>Decuzzi, Paolo</creator><general>RSC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2664-7913</orcidid><orcidid>https://orcid.org/0000-0001-8629-0173</orcidid><orcidid>https://orcid.org/0000-0002-1560-3571</orcidid></search><sort><creationdate>20231205</creationdate><title>Compartmentalized drug localization studies in extracellular vesicles for anticancer therapy</title><author>Pitchaimani, Arunkumar ; Ferreira, Miguel ; Palange, Annalisa ; Pannuzzo, Martina ; De Mei, Claudia ; Spano, Raffaele ; Marotta, Roberto ; Pelacho, Beatriz ; Prosper, Felipe ; Decuzzi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-afa889f64c4e8ed99e9e73ebaddbdf6df21cb9bb2ff359e439a4da13f2e565b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitchaimani, Arunkumar</creatorcontrib><creatorcontrib>Ferreira, Miguel</creatorcontrib><creatorcontrib>Palange, Annalisa</creatorcontrib><creatorcontrib>Pannuzzo, Martina</creatorcontrib><creatorcontrib>De Mei, Claudia</creatorcontrib><creatorcontrib>Spano, Raffaele</creatorcontrib><creatorcontrib>Marotta, Roberto</creatorcontrib><creatorcontrib>Pelacho, Beatriz</creatorcontrib><creatorcontrib>Prosper, Felipe</creatorcontrib><creatorcontrib>Decuzzi, Paolo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitchaimani, Arunkumar</au><au>Ferreira, Miguel</au><au>Palange, Annalisa</au><au>Pannuzzo, Martina</au><au>De Mei, Claudia</au><au>Spano, Raffaele</au><au>Marotta, Roberto</au><au>Pelacho, Beatriz</au><au>Prosper, Felipe</au><au>Decuzzi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compartmentalized drug localization studies in extracellular vesicles for anticancer therapy</atitle><jtitle>Nanoscale advances</jtitle><addtitle>Nanoscale Adv</addtitle><date>2023-12-05</date><risdate>2023</risdate><volume>5</volume><issue>24</issue><spage>683</spage><epage>6836</epage><pages>683-6836</pages><issn>2516-0230</issn><eissn>2516-0230</eissn><abstract>In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight, hydrophilicity, lipophilicity, and so on). As a proof of concept, here we demonstrated the importance of drug compartmentalization in EVs as an additional parameter affecting the therapeutic potential of drug-loaded EVs. In human adipose mesenchymal stem cell (hADSC) derived EVs, we performed a comparative drug loading analysis using two formulations of the same chemotherapeutic molecule - free doxorubicin (DOX) and 1,2-distearoyl- sn-glycero -3-phosphoethanolamine (DSPE) lipid-conjugated doxorubicin (L-DOX) - to enhance the intracellular uptake and therapeutic efficacy. By nano surface energy transfer (NSET) and molecular simulation techniques, along with cryo-TEM analysis, we confirmed the differential compartmentalization of these two molecules in hADSC EVs. L-DOX was preferentially adsorbed onto the surface of the EV, due to its higher lipophilicity, whereas free DOX was mostly encapsulated within the EV core. Also, the L-DOX loaded EV (LDOX@EV) returned an almost three-fold higher DOX content as compared to the free DOX loaded EV (DOX@EV), for a given input mass of drug. Based on the cellular investigations, L-DOX@EV showed higher cell internalization than DOX@EV. Also, in comparison with free L-DOX, the magnitude of therapeutic potential enhancement displayed by the surface compartmentalized L-DOX@EV is highly promising and can be exploited to overcome the sensitivity of many potential drugs, which are impermeable in nature. Overall, this study illustrates the significance of drug compartmentalization in EVs and how this could affect intracellular delivery, loading efficiency, and therapeutic effect. This will further lay the foundation for the future systematic investigation of EV-based biotherapeutic delivery platforms for personalized medicine. Drug compartmentalization in extracellular vesicles for anticancer therapy.</abstract><cop>England</cop><pub>RSC</pub><pmid>38059035</pmid><doi>10.1039/d3na00207a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2664-7913</orcidid><orcidid>https://orcid.org/0000-0001-8629-0173</orcidid><orcidid>https://orcid.org/0000-0002-1560-3571</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2516-0230
ispartof Nanoscale advances, 2023-12, Vol.5 (24), p.683-6836
issn 2516-0230
2516-0230
language eng
recordid cdi_crossref_primary_10_1039_D3NA00207A
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Chemistry
title Compartmentalized drug localization studies in extracellular vesicles for anticancer therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compartmentalized%20drug%20localization%20studies%20in%20extracellular%20vesicles%20for%20anticancer%20therapy&rft.jtitle=Nanoscale%20advances&rft.au=Pitchaimani,%20Arunkumar&rft.date=2023-12-05&rft.volume=5&rft.issue=24&rft.spage=683&rft.epage=6836&rft.pages=683-6836&rft.issn=2516-0230&rft.eissn=2516-0230&rft_id=info:doi/10.1039/d3na00207a&rft_dat=%3Cproquest_cross%3E2899370700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899370700&rft_id=info:pmid/38059035&rfr_iscdi=true