Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale

Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale advances 2023-05, Vol.5 (11), p.2994-34
Hauptverfasser: Schmiedeke, Paul, Panciera, Federico, Harmand, Jean-Christophe, Travers, Laurent, Koblmüller, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 11
container_start_page 2994
container_title Nanoscale advances
container_volume 5
creator Schmiedeke, Paul
Panciera, Federico
Harmand, Jean-Christophe
Travers, Laurent
Koblmüller, Gregor
description Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction, i.e. , crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use in situ transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted in situ without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only via step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions. Thermal decomposition of GaAs nanowires is investigated. Radially it is faster for zinc-blende, due to nano-faceted sidewalls. In contrast, wurtzite forms stable single-faceted sidewalls with decomposition only via step-flow from the tip.
doi_str_mv 10.1039/d3na00135k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NA00135K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821640663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-72bbf1cd9d6cdbd4cbb104fc9ba52336ba22808de7cf9105f71811378fc00e3c3</originalsourceid><addsrcrecordid>eNpdks1v1DAUxC0EolXphTvIR6iU8vwRJzmhVYG2YgUSas-WYzus28RObW_R_vf1smUpnPzk-c1Y1jyEXhM4JcC6D4Z5BUBYffsMHdKaiAoog-dP5gN0nNINAFDCOW-6l-iANVQAb-khuvlh1VhlN1mcVzZOasTG6jDNIbnsgse3ztvsdMJhwOdqkbBXPvxy0SasvNmaXMQ6blIu1jmMm7yZi1acRcIqh8lpnLQa7Sv0YlBjsseP5xG6_vL56uyiWn4_vzxbLCvNWZ2rhvb9QLTpjNCmN1z3PQE-6K5XNWVM9IrSFlpjGz10BOqhIS0hrGkHDWCZZkfo4y53XveTNdr6HNUo5-gmFTcyKCf_VbxbyZ_hXhIoybwTJeH9LmH1n-9isZTbO-DQNUJ096Sw7x5fi-FubVOWk0vajqPyNqyTpC0lgoMQrKAnO1THkFK0wz6bgNyWKT-xb4vfZX4t8Nunv9ijf6orwJsdEJPeq3-3gT0AGQ-ljg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821640663</pqid></control><display><type>article</type><title>Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Schmiedeke, Paul ; Panciera, Federico ; Harmand, Jean-Christophe ; Travers, Laurent ; Koblmüller, Gregor</creator><creatorcontrib>Schmiedeke, Paul ; Panciera, Federico ; Harmand, Jean-Christophe ; Travers, Laurent ; Koblmüller, Gregor</creatorcontrib><description>Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction, i.e. , crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use in situ transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted in situ without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only via step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions. Thermal decomposition of GaAs nanowires is investigated. Radially it is faster for zinc-blende, due to nano-faceted sidewalls. In contrast, wurtzite forms stable single-faceted sidewalls with decomposition only via step-flow from the tip.</description><identifier>ISSN: 2516-0230</identifier><identifier>EISSN: 2516-0230</identifier><identifier>DOI: 10.1039/d3na00135k</identifier><identifier>PMID: 37260482</identifier><language>eng</language><publisher>England: RSC</publisher><subject>Chemical Sciences ; Chemistry ; Material chemistry</subject><ispartof>Nanoscale advances, 2023-05, Vol.5 (11), p.2994-34</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This journal is © The Royal Society of Chemistry 2023 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-72bbf1cd9d6cdbd4cbb104fc9ba52336ba22808de7cf9105f71811378fc00e3c3</citedby><cites>FETCH-LOGICAL-c435t-72bbf1cd9d6cdbd4cbb104fc9ba52336ba22808de7cf9105f71811378fc00e3c3</cites><orcidid>0000-0002-7228-0158 ; 0000-0003-4533-439X ; 0000-0003-0758-0389 ; 0000-0003-2455-6516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228496/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228496/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37260482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04097669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmiedeke, Paul</creatorcontrib><creatorcontrib>Panciera, Federico</creatorcontrib><creatorcontrib>Harmand, Jean-Christophe</creatorcontrib><creatorcontrib>Travers, Laurent</creatorcontrib><creatorcontrib>Koblmüller, Gregor</creatorcontrib><title>Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale</title><title>Nanoscale advances</title><addtitle>Nanoscale Adv</addtitle><description>Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction, i.e. , crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use in situ transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted in situ without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only via step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions. Thermal decomposition of GaAs nanowires is investigated. Radially it is faster for zinc-blende, due to nano-faceted sidewalls. In contrast, wurtzite forms stable single-faceted sidewalls with decomposition only via step-flow from the tip.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Material chemistry</subject><issn>2516-0230</issn><issn>2516-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdks1v1DAUxC0EolXphTvIR6iU8vwRJzmhVYG2YgUSas-WYzus28RObW_R_vf1smUpnPzk-c1Y1jyEXhM4JcC6D4Z5BUBYffsMHdKaiAoog-dP5gN0nNINAFDCOW-6l-iANVQAb-khuvlh1VhlN1mcVzZOasTG6jDNIbnsgse3ztvsdMJhwOdqkbBXPvxy0SasvNmaXMQ6blIu1jmMm7yZi1acRcIqh8lpnLQa7Sv0YlBjsseP5xG6_vL56uyiWn4_vzxbLCvNWZ2rhvb9QLTpjNCmN1z3PQE-6K5XNWVM9IrSFlpjGz10BOqhIS0hrGkHDWCZZkfo4y53XveTNdr6HNUo5-gmFTcyKCf_VbxbyZ_hXhIoybwTJeH9LmH1n-9isZTbO-DQNUJ096Sw7x5fi-FubVOWk0vajqPyNqyTpC0lgoMQrKAnO1THkFK0wz6bgNyWKT-xb4vfZX4t8Nunv9ijf6orwJsdEJPeq3-3gT0AGQ-ljg</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Schmiedeke, Paul</creator><creator>Panciera, Federico</creator><creator>Harmand, Jean-Christophe</creator><creator>Travers, Laurent</creator><creator>Koblmüller, Gregor</creator><general>RSC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7228-0158</orcidid><orcidid>https://orcid.org/0000-0003-4533-439X</orcidid><orcidid>https://orcid.org/0000-0003-0758-0389</orcidid><orcidid>https://orcid.org/0000-0003-2455-6516</orcidid></search><sort><creationdate>20230530</creationdate><title>Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale</title><author>Schmiedeke, Paul ; Panciera, Federico ; Harmand, Jean-Christophe ; Travers, Laurent ; Koblmüller, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-72bbf1cd9d6cdbd4cbb104fc9ba52336ba22808de7cf9105f71811378fc00e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmiedeke, Paul</creatorcontrib><creatorcontrib>Panciera, Federico</creatorcontrib><creatorcontrib>Harmand, Jean-Christophe</creatorcontrib><creatorcontrib>Travers, Laurent</creatorcontrib><creatorcontrib>Koblmüller, Gregor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmiedeke, Paul</au><au>Panciera, Federico</au><au>Harmand, Jean-Christophe</au><au>Travers, Laurent</au><au>Koblmüller, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale</atitle><jtitle>Nanoscale advances</jtitle><addtitle>Nanoscale Adv</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>5</volume><issue>11</issue><spage>2994</spage><epage>34</epage><pages>2994-34</pages><issn>2516-0230</issn><eissn>2516-0230</eissn><abstract>Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction, i.e. , crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use in situ transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted in situ without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only via step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions. Thermal decomposition of GaAs nanowires is investigated. Radially it is faster for zinc-blende, due to nano-faceted sidewalls. In contrast, wurtzite forms stable single-faceted sidewalls with decomposition only via step-flow from the tip.</abstract><cop>England</cop><pub>RSC</pub><pmid>37260482</pmid><doi>10.1039/d3na00135k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7228-0158</orcidid><orcidid>https://orcid.org/0000-0003-4533-439X</orcidid><orcidid>https://orcid.org/0000-0003-0758-0389</orcidid><orcidid>https://orcid.org/0000-0003-2455-6516</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2516-0230
ispartof Nanoscale advances, 2023-05, Vol.5 (11), p.2994-34
issn 2516-0230
2516-0230
language eng
recordid cdi_crossref_primary_10_1039_D3NA00135K
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chemical Sciences
Chemistry
Material chemistry
title Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20thermal%20decomposition%20kinetics%20of%20GaAs%20nanowires%20and%20their%20crystal%20polytypes%20on%20the%20atomic%20scale&rft.jtitle=Nanoscale%20advances&rft.au=Schmiedeke,%20Paul&rft.date=2023-05-30&rft.volume=5&rft.issue=11&rft.spage=2994&rft.epage=34&rft.pages=2994-34&rft.issn=2516-0230&rft.eissn=2516-0230&rft_id=info:doi/10.1039/d3na00135k&rft_dat=%3Cproquest_cross%3E2821640663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821640663&rft_id=info:pmid/37260482&rfr_iscdi=true