Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale
Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, t...
Gespeichert in:
Veröffentlicht in: | Nanoscale advances 2023-05, Vol.5 (11), p.2994-34 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 11 |
container_start_page | 2994 |
container_title | Nanoscale advances |
container_volume | 5 |
creator | Schmiedeke, Paul Panciera, Federico Harmand, Jean-Christophe Travers, Laurent Koblmüller, Gregor |
description | Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction,
i.e.
, crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use
in situ
transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted
in situ
without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only
via
step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions.
Thermal decomposition of GaAs nanowires is investigated. Radially it is faster for zinc-blende, due to nano-faceted sidewalls. In contrast, wurtzite forms stable single-faceted sidewalls with decomposition only
via
step-flow from the tip. |
doi_str_mv | 10.1039/d3na00135k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3NA00135K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821640663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-72bbf1cd9d6cdbd4cbb104fc9ba52336ba22808de7cf9105f71811378fc00e3c3</originalsourceid><addsrcrecordid>eNpdks1v1DAUxC0EolXphTvIR6iU8vwRJzmhVYG2YgUSas-WYzus28RObW_R_vf1smUpnPzk-c1Y1jyEXhM4JcC6D4Z5BUBYffsMHdKaiAoog-dP5gN0nNINAFDCOW-6l-iANVQAb-khuvlh1VhlN1mcVzZOasTG6jDNIbnsgse3ztvsdMJhwOdqkbBXPvxy0SasvNmaXMQ6blIu1jmMm7yZi1acRcIqh8lpnLQa7Sv0YlBjsseP5xG6_vL56uyiWn4_vzxbLCvNWZ2rhvb9QLTpjNCmN1z3PQE-6K5XNWVM9IrSFlpjGz10BOqhIS0hrGkHDWCZZkfo4y53XveTNdr6HNUo5-gmFTcyKCf_VbxbyZ_hXhIoybwTJeH9LmH1n-9isZTbO-DQNUJ096Sw7x5fi-FubVOWk0vajqPyNqyTpC0lgoMQrKAnO1THkFK0wz6bgNyWKT-xb4vfZX4t8Nunv9ijf6orwJsdEJPeq3-3gT0AGQ-ljg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821640663</pqid></control><display><type>article</type><title>Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Schmiedeke, Paul ; Panciera, Federico ; Harmand, Jean-Christophe ; Travers, Laurent ; Koblmüller, Gregor</creator><creatorcontrib>Schmiedeke, Paul ; Panciera, Federico ; Harmand, Jean-Christophe ; Travers, Laurent ; Koblmüller, Gregor</creatorcontrib><description>Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction,
i.e.
, crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use
in situ
transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted
in situ
without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only
via
step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions.
Thermal decomposition of GaAs nanowires is investigated. Radially it is faster for zinc-blende, due to nano-faceted sidewalls. In contrast, wurtzite forms stable single-faceted sidewalls with decomposition only
via
step-flow from the tip.</description><identifier>ISSN: 2516-0230</identifier><identifier>EISSN: 2516-0230</identifier><identifier>DOI: 10.1039/d3na00135k</identifier><identifier>PMID: 37260482</identifier><language>eng</language><publisher>England: RSC</publisher><subject>Chemical Sciences ; Chemistry ; Material chemistry</subject><ispartof>Nanoscale advances, 2023-05, Vol.5 (11), p.2994-34</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This journal is © The Royal Society of Chemistry 2023 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-72bbf1cd9d6cdbd4cbb104fc9ba52336ba22808de7cf9105f71811378fc00e3c3</citedby><cites>FETCH-LOGICAL-c435t-72bbf1cd9d6cdbd4cbb104fc9ba52336ba22808de7cf9105f71811378fc00e3c3</cites><orcidid>0000-0002-7228-0158 ; 0000-0003-4533-439X ; 0000-0003-0758-0389 ; 0000-0003-2455-6516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228496/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228496/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37260482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04097669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmiedeke, Paul</creatorcontrib><creatorcontrib>Panciera, Federico</creatorcontrib><creatorcontrib>Harmand, Jean-Christophe</creatorcontrib><creatorcontrib>Travers, Laurent</creatorcontrib><creatorcontrib>Koblmüller, Gregor</creatorcontrib><title>Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale</title><title>Nanoscale advances</title><addtitle>Nanoscale Adv</addtitle><description>Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction,
i.e.
, crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use
in situ
transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted
in situ
without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only
via
step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions.
Thermal decomposition of GaAs nanowires is investigated. Radially it is faster for zinc-blende, due to nano-faceted sidewalls. In contrast, wurtzite forms stable single-faceted sidewalls with decomposition only
via
step-flow from the tip.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Material chemistry</subject><issn>2516-0230</issn><issn>2516-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdks1v1DAUxC0EolXphTvIR6iU8vwRJzmhVYG2YgUSas-WYzus28RObW_R_vf1smUpnPzk-c1Y1jyEXhM4JcC6D4Z5BUBYffsMHdKaiAoog-dP5gN0nNINAFDCOW-6l-iANVQAb-khuvlh1VhlN1mcVzZOasTG6jDNIbnsgse3ztvsdMJhwOdqkbBXPvxy0SasvNmaXMQ6blIu1jmMm7yZi1acRcIqh8lpnLQa7Sv0YlBjsseP5xG6_vL56uyiWn4_vzxbLCvNWZ2rhvb9QLTpjNCmN1z3PQE-6K5XNWVM9IrSFlpjGz10BOqhIS0hrGkHDWCZZkfo4y53XveTNdr6HNUo5-gmFTcyKCf_VbxbyZ_hXhIoybwTJeH9LmH1n-9isZTbO-DQNUJ096Sw7x5fi-FubVOWk0vajqPyNqyTpC0lgoMQrKAnO1THkFK0wz6bgNyWKT-xb4vfZX4t8Nunv9ijf6orwJsdEJPeq3-3gT0AGQ-ljg</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Schmiedeke, Paul</creator><creator>Panciera, Federico</creator><creator>Harmand, Jean-Christophe</creator><creator>Travers, Laurent</creator><creator>Koblmüller, Gregor</creator><general>RSC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7228-0158</orcidid><orcidid>https://orcid.org/0000-0003-4533-439X</orcidid><orcidid>https://orcid.org/0000-0003-0758-0389</orcidid><orcidid>https://orcid.org/0000-0003-2455-6516</orcidid></search><sort><creationdate>20230530</creationdate><title>Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale</title><author>Schmiedeke, Paul ; Panciera, Federico ; Harmand, Jean-Christophe ; Travers, Laurent ; Koblmüller, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-72bbf1cd9d6cdbd4cbb104fc9ba52336ba22808de7cf9105f71811378fc00e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmiedeke, Paul</creatorcontrib><creatorcontrib>Panciera, Federico</creatorcontrib><creatorcontrib>Harmand, Jean-Christophe</creatorcontrib><creatorcontrib>Travers, Laurent</creatorcontrib><creatorcontrib>Koblmüller, Gregor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmiedeke, Paul</au><au>Panciera, Federico</au><au>Harmand, Jean-Christophe</au><au>Travers, Laurent</au><au>Koblmüller, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale</atitle><jtitle>Nanoscale advances</jtitle><addtitle>Nanoscale Adv</addtitle><date>2023-05-30</date><risdate>2023</risdate><volume>5</volume><issue>11</issue><spage>2994</spage><epage>34</epage><pages>2994-34</pages><issn>2516-0230</issn><eissn>2516-0230</eissn><abstract>Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction,
i.e.
, crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use
in situ
transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted
in situ
without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only
via
step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions.
Thermal decomposition of GaAs nanowires is investigated. Radially it is faster for zinc-blende, due to nano-faceted sidewalls. In contrast, wurtzite forms stable single-faceted sidewalls with decomposition only
via
step-flow from the tip.</abstract><cop>England</cop><pub>RSC</pub><pmid>37260482</pmid><doi>10.1039/d3na00135k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7228-0158</orcidid><orcidid>https://orcid.org/0000-0003-4533-439X</orcidid><orcidid>https://orcid.org/0000-0003-0758-0389</orcidid><orcidid>https://orcid.org/0000-0003-2455-6516</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2516-0230 |
ispartof | Nanoscale advances, 2023-05, Vol.5 (11), p.2994-34 |
issn | 2516-0230 2516-0230 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3NA00135K |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Chemical Sciences Chemistry Material chemistry |
title | Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20thermal%20decomposition%20kinetics%20of%20GaAs%20nanowires%20and%20their%20crystal%20polytypes%20on%20the%20atomic%20scale&rft.jtitle=Nanoscale%20advances&rft.au=Schmiedeke,%20Paul&rft.date=2023-05-30&rft.volume=5&rft.issue=11&rft.spage=2994&rft.epage=34&rft.pages=2994-34&rft.issn=2516-0230&rft.eissn=2516-0230&rft_id=info:doi/10.1039/d3na00135k&rft_dat=%3Cproquest_cross%3E2821640663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821640663&rft_id=info:pmid/37260482&rfr_iscdi=true |