Electronic engineering and oxygen vacancy modification of La 0.6 Sr 0.4 FeO 3− δ perovskite oxide by low-electronegativity sodium substitution for efficient CO 2 /CO fueled reversible solid oxide cells
Reversible solid oxide cells (RSOCs) hold enormous potential for efficient direct CO 2 reduction or CO oxidation in terms of exceptional faradic efficiency and high reaction kinetics. The identification of an active fuel electrode is highly desirable for enhancing the performance of RSOCs. This stud...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2024-03, Vol.26 (6), p.3202-3210 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3210 |
---|---|
container_issue | 6 |
container_start_page | 3202 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 26 |
creator | Lin, Wanbin Li, Yihang Singh, Manish Zhao, Huibin Yang, Rui Su, Pei-Chen Fan, Liangdong |
description | Reversible solid oxide cells (RSOCs) hold enormous potential for efficient direct CO
2
reduction or CO oxidation in terms of exceptional faradic efficiency and high reaction kinetics. The identification of an active fuel electrode is highly desirable for enhancing the performance of RSOCs. This study explores the use of a alkaline metal dopant (Na) to modify the perovskite oxide of Na
2
x
(La
0.6−
x
Sr
0.4−
x
)FeO
3−
δ
(2
x
= 0, 0.10, 0.20) materials with powerful CO
2
chemical adsorption capacity, high oxygen ion conductivity, and low average valence of Fe sites for CO
2
/CO redox reactions. The experimental results indicate that the cells with the NaLSF0.10 fuel electrode achieve a current density of 1.707 A cm
−2
at 1.5 V/800 °C and excellent stability over 120 hours at 750 °C for pure CO
2
electrolysis, approximately 33.4% improvement over the pristine sample. When operated under a mixed CO–CO
2
atmosphere under RSOC mode, the cell outputs the performance of 1.589 A cm
−2
at 1.5 V and 329 mW cm
−2
at 800 °C, and demonstrates relatively durable operation over 25 cycles. The addition of low valence sodium ions with high basicity and low electronegativity reduces the oxygen vacancy formation energy, increases the concentration of oxygen vacancies and modifies the electronic structure of LSF, thus enhancing CO
2
adsorption, dissociation processes and charge transfer steps as corroborated by the detailed experimental analysis. Combined with the acceptable anti-carbon deposition capability, we prove here a feasible strategy and provide new insights into designing novel electrodes for SOEC/RSOCs to effectively convert CO
2
with potential for renewable energy storage. |
doi_str_mv | 10.1039/D3GC04451C |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3GC04451C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D3GC04451C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76C-eb4192e0e2e7ab3d4c00148f1097070fe3366d01ad2ebedd00bad3dd5446f3cb3</originalsourceid><addsrcrecordid>eNpFkUFOwzAURCMEEqWw4QR_jRRqx25Clii0BalSF3RfOfZ3ZUjtyk4KuQFrzsIxEIfgJBioYPPnb-aNNJMk55RcUsLK0Q2bVYTzMa0OkgHlOUvLrCCHf3-eHScnITwQQmmR80HyPmlQtt5ZIwHt2lhEb-wahFXgnvs1WtgJKazsYeOU0UaK1jgLTsNcALnM4d5H4TDFBbDPl1f4eIMtercLj6bFyDAKoe6hcU8p7rNwHSE70_YQIrPbQOjq0Jq2-0Fr5wF1TDJoW6gWkMEoXt1FuwKPO_TB1A1Gc2PUPkFi04TT5EiLJuDZXofJcjpZVrfpfDG7q67nqSzyKsWa0zJDghkWomaKy9gGv9KUlAUpiEbG8lwRKlSGNSpFSC0UU2rMea6ZrNkwufjFSu9C8KhXW282wvcrSlbfM6z-Z2Bfw2R_gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic engineering and oxygen vacancy modification of La 0.6 Sr 0.4 FeO 3− δ perovskite oxide by low-electronegativity sodium substitution for efficient CO 2 /CO fueled reversible solid oxide cells</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lin, Wanbin ; Li, Yihang ; Singh, Manish ; Zhao, Huibin ; Yang, Rui ; Su, Pei-Chen ; Fan, Liangdong</creator><creatorcontrib>Lin, Wanbin ; Li, Yihang ; Singh, Manish ; Zhao, Huibin ; Yang, Rui ; Su, Pei-Chen ; Fan, Liangdong</creatorcontrib><description>Reversible solid oxide cells (RSOCs) hold enormous potential for efficient direct CO
2
reduction or CO oxidation in terms of exceptional faradic efficiency and high reaction kinetics. The identification of an active fuel electrode is highly desirable for enhancing the performance of RSOCs. This study explores the use of a alkaline metal dopant (Na) to modify the perovskite oxide of Na
2
x
(La
0.6−
x
Sr
0.4−
x
)FeO
3−
δ
(2
x
= 0, 0.10, 0.20) materials with powerful CO
2
chemical adsorption capacity, high oxygen ion conductivity, and low average valence of Fe sites for CO
2
/CO redox reactions. The experimental results indicate that the cells with the NaLSF0.10 fuel electrode achieve a current density of 1.707 A cm
−2
at 1.5 V/800 °C and excellent stability over 120 hours at 750 °C for pure CO
2
electrolysis, approximately 33.4% improvement over the pristine sample. When operated under a mixed CO–CO
2
atmosphere under RSOC mode, the cell outputs the performance of 1.589 A cm
−2
at 1.5 V and 329 mW cm
−2
at 800 °C, and demonstrates relatively durable operation over 25 cycles. The addition of low valence sodium ions with high basicity and low electronegativity reduces the oxygen vacancy formation energy, increases the concentration of oxygen vacancies and modifies the electronic structure of LSF, thus enhancing CO
2
adsorption, dissociation processes and charge transfer steps as corroborated by the detailed experimental analysis. Combined with the acceptable anti-carbon deposition capability, we prove here a feasible strategy and provide new insights into designing novel electrodes for SOEC/RSOCs to effectively convert CO
2
with potential for renewable energy storage.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/D3GC04451C</identifier><language>eng</language><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-03, Vol.26 (6), p.3202-3210</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76C-eb4192e0e2e7ab3d4c00148f1097070fe3366d01ad2ebedd00bad3dd5446f3cb3</citedby><cites>FETCH-LOGICAL-c76C-eb4192e0e2e7ab3d4c00148f1097070fe3366d01ad2ebedd00bad3dd5446f3cb3</cites><orcidid>0000-0002-4196-2981 ; 0000-0002-1842-8393 ; 0000-0002-5485-9553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lin, Wanbin</creatorcontrib><creatorcontrib>Li, Yihang</creatorcontrib><creatorcontrib>Singh, Manish</creatorcontrib><creatorcontrib>Zhao, Huibin</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Su, Pei-Chen</creatorcontrib><creatorcontrib>Fan, Liangdong</creatorcontrib><title>Electronic engineering and oxygen vacancy modification of La 0.6 Sr 0.4 FeO 3− δ perovskite oxide by low-electronegativity sodium substitution for efficient CO 2 /CO fueled reversible solid oxide cells</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Reversible solid oxide cells (RSOCs) hold enormous potential for efficient direct CO
2
reduction or CO oxidation in terms of exceptional faradic efficiency and high reaction kinetics. The identification of an active fuel electrode is highly desirable for enhancing the performance of RSOCs. This study explores the use of a alkaline metal dopant (Na) to modify the perovskite oxide of Na
2
x
(La
0.6−
x
Sr
0.4−
x
)FeO
3−
δ
(2
x
= 0, 0.10, 0.20) materials with powerful CO
2
chemical adsorption capacity, high oxygen ion conductivity, and low average valence of Fe sites for CO
2
/CO redox reactions. The experimental results indicate that the cells with the NaLSF0.10 fuel electrode achieve a current density of 1.707 A cm
−2
at 1.5 V/800 °C and excellent stability over 120 hours at 750 °C for pure CO
2
electrolysis, approximately 33.4% improvement over the pristine sample. When operated under a mixed CO–CO
2
atmosphere under RSOC mode, the cell outputs the performance of 1.589 A cm
−2
at 1.5 V and 329 mW cm
−2
at 800 °C, and demonstrates relatively durable operation over 25 cycles. The addition of low valence sodium ions with high basicity and low electronegativity reduces the oxygen vacancy formation energy, increases the concentration of oxygen vacancies and modifies the electronic structure of LSF, thus enhancing CO
2
adsorption, dissociation processes and charge transfer steps as corroborated by the detailed experimental analysis. Combined with the acceptable anti-carbon deposition capability, we prove here a feasible strategy and provide new insights into designing novel electrodes for SOEC/RSOCs to effectively convert CO
2
with potential for renewable energy storage.</description><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkUFOwzAURCMEEqWw4QR_jRRqx25Clii0BalSF3RfOfZ3ZUjtyk4KuQFrzsIxEIfgJBioYPPnb-aNNJMk55RcUsLK0Q2bVYTzMa0OkgHlOUvLrCCHf3-eHScnITwQQmmR80HyPmlQtt5ZIwHt2lhEb-wahFXgnvs1WtgJKazsYeOU0UaK1jgLTsNcALnM4d5H4TDFBbDPl1f4eIMtercLj6bFyDAKoe6hcU8p7rNwHSE70_YQIrPbQOjq0Jq2-0Fr5wF1TDJoW6gWkMEoXt1FuwKPO_TB1A1Gc2PUPkFi04TT5EiLJuDZXofJcjpZVrfpfDG7q67nqSzyKsWa0zJDghkWomaKy9gGv9KUlAUpiEbG8lwRKlSGNSpFSC0UU2rMea6ZrNkwufjFSu9C8KhXW282wvcrSlbfM6z-Z2Bfw2R_gg</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Lin, Wanbin</creator><creator>Li, Yihang</creator><creator>Singh, Manish</creator><creator>Zhao, Huibin</creator><creator>Yang, Rui</creator><creator>Su, Pei-Chen</creator><creator>Fan, Liangdong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4196-2981</orcidid><orcidid>https://orcid.org/0000-0002-1842-8393</orcidid><orcidid>https://orcid.org/0000-0002-5485-9553</orcidid></search><sort><creationdate>20240318</creationdate><title>Electronic engineering and oxygen vacancy modification of La 0.6 Sr 0.4 FeO 3− δ perovskite oxide by low-electronegativity sodium substitution for efficient CO 2 /CO fueled reversible solid oxide cells</title><author>Lin, Wanbin ; Li, Yihang ; Singh, Manish ; Zhao, Huibin ; Yang, Rui ; Su, Pei-Chen ; Fan, Liangdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76C-eb4192e0e2e7ab3d4c00148f1097070fe3366d01ad2ebedd00bad3dd5446f3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wanbin</creatorcontrib><creatorcontrib>Li, Yihang</creatorcontrib><creatorcontrib>Singh, Manish</creatorcontrib><creatorcontrib>Zhao, Huibin</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Su, Pei-Chen</creatorcontrib><creatorcontrib>Fan, Liangdong</creatorcontrib><collection>CrossRef</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wanbin</au><au>Li, Yihang</au><au>Singh, Manish</au><au>Zhao, Huibin</au><au>Yang, Rui</au><au>Su, Pei-Chen</au><au>Fan, Liangdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic engineering and oxygen vacancy modification of La 0.6 Sr 0.4 FeO 3− δ perovskite oxide by low-electronegativity sodium substitution for efficient CO 2 /CO fueled reversible solid oxide cells</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-03-18</date><risdate>2024</risdate><volume>26</volume><issue>6</issue><spage>3202</spage><epage>3210</epage><pages>3202-3210</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Reversible solid oxide cells (RSOCs) hold enormous potential for efficient direct CO
2
reduction or CO oxidation in terms of exceptional faradic efficiency and high reaction kinetics. The identification of an active fuel electrode is highly desirable for enhancing the performance of RSOCs. This study explores the use of a alkaline metal dopant (Na) to modify the perovskite oxide of Na
2
x
(La
0.6−
x
Sr
0.4−
x
)FeO
3−
δ
(2
x
= 0, 0.10, 0.20) materials with powerful CO
2
chemical adsorption capacity, high oxygen ion conductivity, and low average valence of Fe sites for CO
2
/CO redox reactions. The experimental results indicate that the cells with the NaLSF0.10 fuel electrode achieve a current density of 1.707 A cm
−2
at 1.5 V/800 °C and excellent stability over 120 hours at 750 °C for pure CO
2
electrolysis, approximately 33.4% improvement over the pristine sample. When operated under a mixed CO–CO
2
atmosphere under RSOC mode, the cell outputs the performance of 1.589 A cm
−2
at 1.5 V and 329 mW cm
−2
at 800 °C, and demonstrates relatively durable operation over 25 cycles. The addition of low valence sodium ions with high basicity and low electronegativity reduces the oxygen vacancy formation energy, increases the concentration of oxygen vacancies and modifies the electronic structure of LSF, thus enhancing CO
2
adsorption, dissociation processes and charge transfer steps as corroborated by the detailed experimental analysis. Combined with the acceptable anti-carbon deposition capability, we prove here a feasible strategy and provide new insights into designing novel electrodes for SOEC/RSOCs to effectively convert CO
2
with potential for renewable energy storage.</abstract><doi>10.1039/D3GC04451C</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4196-2981</orcidid><orcidid>https://orcid.org/0000-0002-1842-8393</orcidid><orcidid>https://orcid.org/0000-0002-5485-9553</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2024-03, Vol.26 (6), p.3202-3210 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3GC04451C |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Electronic engineering and oxygen vacancy modification of La 0.6 Sr 0.4 FeO 3− δ perovskite oxide by low-electronegativity sodium substitution for efficient CO 2 /CO fueled reversible solid oxide cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20engineering%20and%20oxygen%20vacancy%20modification%20of%20La%200.6%20Sr%200.4%20FeO%203%E2%88%92%20%CE%B4%20perovskite%20oxide%20by%20low-electronegativity%20sodium%20substitution%20for%20efficient%20CO%202%20/CO%20fueled%20reversible%20solid%20oxide%20cells&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Lin,%20Wanbin&rft.date=2024-03-18&rft.volume=26&rft.issue=6&rft.spage=3202&rft.epage=3210&rft.pages=3202-3210&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/D3GC04451C&rft_dat=%3Ccrossref%3E10_1039_D3GC04451C%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |