Towards scalable reductive etherification of 5-hydroxymethyl-furfural through iridium-zeolite-based bifunctional catalysis
Developing practical and scalable catalytic approaches for directly converting concentrated 5-hydroxymethylfurfural (HMF) into value-added bio-based chemicals represents a major challenge in efforts to make the lignocellulosic biorefinery a sustainable and ecologically viable reality. We present her...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2023-12, Vol.25 (24), p.1381-1386 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1386 |
---|---|
container_issue | 24 |
container_start_page | 1381 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 25 |
creator | Sun, Zehui Chen, Mugeng Wang, Kaizhi Chen, Chen Fei, Jiachen Guo, Wendi Zhu, Conglin He, Heyong Liu, Yongmei Cao, Yong |
description | Developing practical and scalable catalytic approaches for directly converting concentrated 5-hydroxymethylfurfural (HMF) into value-added bio-based chemicals represents a major challenge in efforts to make the lignocellulosic biorefinery a sustainable and ecologically viable reality. We present here Ir/Na-ZSM-5 as a robust catalyst for efficiently producing 2,5-bis(methoxymethyl)furan (BMMF), a crucial compound for advanced biorefineries, through the reductive etherification of HMF. Benefitting from its unique structural features as well as the cooperative interaction between selective hydrogenation enabled by ultrasmall Ir nanoparticles and appropriate surface acidity resulting from alkali exchange, Ir/Na-ZSM-5 achieves impressive BMMF yields (91%) and maintains over 98% carbon balance from concentrated HMF (up to 22.6 wt%) under mild conditions (50 °C, 1 MPa H
2
). Moreover, the catalyst displays outstanding stability with an unmatched turnover number during extended flow-reaction processes, underscoring its applicability for large-scale production.
Ir/Na-ZSM-5, featuring ultra-small Ir NPs and suitable surface acidity resulted from alkali exchange, could deliver impressive BMMF yields from concentrated HMF (up to 22.6 wt%)
via
reductive etherification under mild conditions (50 °C, 1 MPa H
2
). |
doi_str_mv | 10.1039/d3gc03508e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3GC03508E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900201308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-a775e3824b2f5fe61727b20f2b2290bbc2ca3bec570a5e01d7d840ae60a45f43</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsX70LAm7A6SfarR6m1CgUvvS_5mHRTtk1NdtXtr3e1UmFgBuaZh-El5JrBPQMxeTBipUFkUOIJGbE0F8mEF3B6nHN-Ti5iXAMwVuTpiOyX_lMGE2nUspGqQRrQdLp1H0ixrTE467Rsnd9Sb2mW1L0J_qvfDLu-SWwXhpINbevgu1VNXXDGdZtkj75xLSZKRjRUOdtt9Y9kQAebbPro4iU5s7KJePXXx2T5PFtOX5LF2_x1-rhINC9Zm8iiyFCUPFXcZhZzVvBCcbBccT4BpTTXUijUWQEyQ2CmMGUKEnOQaWZTMSa3B-0u-PcOY1utfReGT2I13AMHJqAcqLsDpYOPMaCtdsFtZOgrBtVPtNWTmE9_o50N8M0BDlEfuf_oxTfZSHkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900201308</pqid></control><display><type>article</type><title>Towards scalable reductive etherification of 5-hydroxymethyl-furfural through iridium-zeolite-based bifunctional catalysis</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sun, Zehui ; Chen, Mugeng ; Wang, Kaizhi ; Chen, Chen ; Fei, Jiachen ; Guo, Wendi ; Zhu, Conglin ; He, Heyong ; Liu, Yongmei ; Cao, Yong</creator><creatorcontrib>Sun, Zehui ; Chen, Mugeng ; Wang, Kaizhi ; Chen, Chen ; Fei, Jiachen ; Guo, Wendi ; Zhu, Conglin ; He, Heyong ; Liu, Yongmei ; Cao, Yong</creatorcontrib><description>Developing practical and scalable catalytic approaches for directly converting concentrated 5-hydroxymethylfurfural (HMF) into value-added bio-based chemicals represents a major challenge in efforts to make the lignocellulosic biorefinery a sustainable and ecologically viable reality. We present here Ir/Na-ZSM-5 as a robust catalyst for efficiently producing 2,5-bis(methoxymethyl)furan (BMMF), a crucial compound for advanced biorefineries, through the reductive etherification of HMF. Benefitting from its unique structural features as well as the cooperative interaction between selective hydrogenation enabled by ultrasmall Ir nanoparticles and appropriate surface acidity resulting from alkali exchange, Ir/Na-ZSM-5 achieves impressive BMMF yields (91%) and maintains over 98% carbon balance from concentrated HMF (up to 22.6 wt%) under mild conditions (50 °C, 1 MPa H
2
). Moreover, the catalyst displays outstanding stability with an unmatched turnover number during extended flow-reaction processes, underscoring its applicability for large-scale production.
Ir/Na-ZSM-5, featuring ultra-small Ir NPs and suitable surface acidity resulted from alkali exchange, could deliver impressive BMMF yields from concentrated HMF (up to 22.6 wt%)
via
reductive etherification under mild conditions (50 °C, 1 MPa H
2
).</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d3gc03508e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acidity ; Biorefineries ; Catalysis ; Catalysts ; Catalytic converters ; Flow stability ; Furfural ; Green chemistry ; Hydroxymethylfurfural ; Iridium ; Lignocellulose ; Nanoparticles ; Refining ; Zeolites</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2023-12, Vol.25 (24), p.1381-1386</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-a775e3824b2f5fe61727b20f2b2290bbc2ca3bec570a5e01d7d840ae60a45f43</citedby><cites>FETCH-LOGICAL-c281t-a775e3824b2f5fe61727b20f2b2290bbc2ca3bec570a5e01d7d840ae60a45f43</cites><orcidid>0000-0001-6810-3450 ; 0000-0002-1781-6255 ; 0000-0002-8333-0181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, Zehui</creatorcontrib><creatorcontrib>Chen, Mugeng</creatorcontrib><creatorcontrib>Wang, Kaizhi</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Fei, Jiachen</creatorcontrib><creatorcontrib>Guo, Wendi</creatorcontrib><creatorcontrib>Zhu, Conglin</creatorcontrib><creatorcontrib>He, Heyong</creatorcontrib><creatorcontrib>Liu, Yongmei</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><title>Towards scalable reductive etherification of 5-hydroxymethyl-furfural through iridium-zeolite-based bifunctional catalysis</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Developing practical and scalable catalytic approaches for directly converting concentrated 5-hydroxymethylfurfural (HMF) into value-added bio-based chemicals represents a major challenge in efforts to make the lignocellulosic biorefinery a sustainable and ecologically viable reality. We present here Ir/Na-ZSM-5 as a robust catalyst for efficiently producing 2,5-bis(methoxymethyl)furan (BMMF), a crucial compound for advanced biorefineries, through the reductive etherification of HMF. Benefitting from its unique structural features as well as the cooperative interaction between selective hydrogenation enabled by ultrasmall Ir nanoparticles and appropriate surface acidity resulting from alkali exchange, Ir/Na-ZSM-5 achieves impressive BMMF yields (91%) and maintains over 98% carbon balance from concentrated HMF (up to 22.6 wt%) under mild conditions (50 °C, 1 MPa H
2
). Moreover, the catalyst displays outstanding stability with an unmatched turnover number during extended flow-reaction processes, underscoring its applicability for large-scale production.
Ir/Na-ZSM-5, featuring ultra-small Ir NPs and suitable surface acidity resulted from alkali exchange, could deliver impressive BMMF yields from concentrated HMF (up to 22.6 wt%)
via
reductive etherification under mild conditions (50 °C, 1 MPa H
2
).</description><subject>Acidity</subject><subject>Biorefineries</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Flow stability</subject><subject>Furfural</subject><subject>Green chemistry</subject><subject>Hydroxymethylfurfural</subject><subject>Iridium</subject><subject>Lignocellulose</subject><subject>Nanoparticles</subject><subject>Refining</subject><subject>Zeolites</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsX70LAm7A6SfarR6m1CgUvvS_5mHRTtk1NdtXtr3e1UmFgBuaZh-El5JrBPQMxeTBipUFkUOIJGbE0F8mEF3B6nHN-Ti5iXAMwVuTpiOyX_lMGE2nUspGqQRrQdLp1H0ixrTE467Rsnd9Sb2mW1L0J_qvfDLu-SWwXhpINbevgu1VNXXDGdZtkj75xLSZKRjRUOdtt9Y9kQAebbPro4iU5s7KJePXXx2T5PFtOX5LF2_x1-rhINC9Zm8iiyFCUPFXcZhZzVvBCcbBccT4BpTTXUijUWQEyQ2CmMGUKEnOQaWZTMSa3B-0u-PcOY1utfReGT2I13AMHJqAcqLsDpYOPMaCtdsFtZOgrBtVPtNWTmE9_o50N8M0BDlEfuf_oxTfZSHkE</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Sun, Zehui</creator><creator>Chen, Mugeng</creator><creator>Wang, Kaizhi</creator><creator>Chen, Chen</creator><creator>Fei, Jiachen</creator><creator>Guo, Wendi</creator><creator>Zhu, Conglin</creator><creator>He, Heyong</creator><creator>Liu, Yongmei</creator><creator>Cao, Yong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6810-3450</orcidid><orcidid>https://orcid.org/0000-0002-1781-6255</orcidid><orcidid>https://orcid.org/0000-0002-8333-0181</orcidid></search><sort><creationdate>20231211</creationdate><title>Towards scalable reductive etherification of 5-hydroxymethyl-furfural through iridium-zeolite-based bifunctional catalysis</title><author>Sun, Zehui ; Chen, Mugeng ; Wang, Kaizhi ; Chen, Chen ; Fei, Jiachen ; Guo, Wendi ; Zhu, Conglin ; He, Heyong ; Liu, Yongmei ; Cao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-a775e3824b2f5fe61727b20f2b2290bbc2ca3bec570a5e01d7d840ae60a45f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidity</topic><topic>Biorefineries</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Flow stability</topic><topic>Furfural</topic><topic>Green chemistry</topic><topic>Hydroxymethylfurfural</topic><topic>Iridium</topic><topic>Lignocellulose</topic><topic>Nanoparticles</topic><topic>Refining</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zehui</creatorcontrib><creatorcontrib>Chen, Mugeng</creatorcontrib><creatorcontrib>Wang, Kaizhi</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Fei, Jiachen</creatorcontrib><creatorcontrib>Guo, Wendi</creatorcontrib><creatorcontrib>Zhu, Conglin</creatorcontrib><creatorcontrib>He, Heyong</creatorcontrib><creatorcontrib>Liu, Yongmei</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zehui</au><au>Chen, Mugeng</au><au>Wang, Kaizhi</au><au>Chen, Chen</au><au>Fei, Jiachen</au><au>Guo, Wendi</au><au>Zhu, Conglin</au><au>He, Heyong</au><au>Liu, Yongmei</au><au>Cao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards scalable reductive etherification of 5-hydroxymethyl-furfural through iridium-zeolite-based bifunctional catalysis</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2023-12-11</date><risdate>2023</risdate><volume>25</volume><issue>24</issue><spage>1381</spage><epage>1386</epage><pages>1381-1386</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Developing practical and scalable catalytic approaches for directly converting concentrated 5-hydroxymethylfurfural (HMF) into value-added bio-based chemicals represents a major challenge in efforts to make the lignocellulosic biorefinery a sustainable and ecologically viable reality. We present here Ir/Na-ZSM-5 as a robust catalyst for efficiently producing 2,5-bis(methoxymethyl)furan (BMMF), a crucial compound for advanced biorefineries, through the reductive etherification of HMF. Benefitting from its unique structural features as well as the cooperative interaction between selective hydrogenation enabled by ultrasmall Ir nanoparticles and appropriate surface acidity resulting from alkali exchange, Ir/Na-ZSM-5 achieves impressive BMMF yields (91%) and maintains over 98% carbon balance from concentrated HMF (up to 22.6 wt%) under mild conditions (50 °C, 1 MPa H
2
). Moreover, the catalyst displays outstanding stability with an unmatched turnover number during extended flow-reaction processes, underscoring its applicability for large-scale production.
Ir/Na-ZSM-5, featuring ultra-small Ir NPs and suitable surface acidity resulted from alkali exchange, could deliver impressive BMMF yields from concentrated HMF (up to 22.6 wt%)
via
reductive etherification under mild conditions (50 °C, 1 MPa H
2
).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3gc03508e</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6810-3450</orcidid><orcidid>https://orcid.org/0000-0002-1781-6255</orcidid><orcidid>https://orcid.org/0000-0002-8333-0181</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2023-12, Vol.25 (24), p.1381-1386 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3GC03508E |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Acidity Biorefineries Catalysis Catalysts Catalytic converters Flow stability Furfural Green chemistry Hydroxymethylfurfural Iridium Lignocellulose Nanoparticles Refining Zeolites |
title | Towards scalable reductive etherification of 5-hydroxymethyl-furfural through iridium-zeolite-based bifunctional catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20scalable%20reductive%20etherification%20of%205-hydroxymethyl-furfural%20through%20iridium-zeolite-based%20bifunctional%20catalysis&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Sun,%20Zehui&rft.date=2023-12-11&rft.volume=25&rft.issue=24&rft.spage=1381&rft.epage=1386&rft.pages=1381-1386&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d3gc03508e&rft_dat=%3Cproquest_cross%3E2900201308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900201308&rft_id=info:pmid/&rfr_iscdi=true |