Direct measurements of size-independent lithium diffusion and reaction times in individual polycrystalline battery particles

Polycrystalline Li(Ni,Mn,Co)O 2 (NMC) secondary particles are the most common cathode materials for Li-ion batteries. During electrochemical (dis)charge, lithium is believed to diffuse through the bulk and enter (leave) the secondary particle at the surface. Based on this model, smaller particles wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-09, Vol.16 (9), p.3847-3859
Hauptverfasser: Min, Jinhong, Gubow, Lindsay M, Hargrave, Riley J, Siegel, Jason B, Li, Yiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3859
container_issue 9
container_start_page 3847
container_title Energy & environmental science
container_volume 16
creator Min, Jinhong
Gubow, Lindsay M
Hargrave, Riley J
Siegel, Jason B
Li, Yiyang
description Polycrystalline Li(Ni,Mn,Co)O 2 (NMC) secondary particles are the most common cathode materials for Li-ion batteries. During electrochemical (dis)charge, lithium is believed to diffuse through the bulk and enter (leave) the secondary particle at the surface. Based on this model, smaller particles would cycle faster due to shorter diffusion lengths and larger surface-area-to-volume ratios. In this work, we evaluate this widespread assumption by developing a new high-throughput single-particle electrochemistry platform using the multi-electrode array from neuroscience. By measuring the reaction and diffusion times for 21 individual particles in liquid electrolytes, we find no correlation between the particle size and either the reaction or diffusion times, which is in stark contrast to the prevailing lithium transport model. We propose that electrochemical reactions occur inside secondary particles, likely due to electrolyte penetration into cracks. Our high-throughput, single-particle electrochemical platform further opens new frontiers for robust, statistical quantification of individual particles in electrochemical systems. A newly developed single-particle electrochemistry platform conducted on NMC cathodes for Li-ion batteries shows that smaller particles do not have faster charging and discharge rates than larger ones.
doi_str_mv 10.1039/d3ee00953j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3EE00953J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864133496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-61c5db7576f9646c6582e665c73c9e32e155b4e579f63084ed9418db3789e2a63</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK5evAsBb0I1aZqkOcq6frHgRc8lm0wxS5vWJBUq_ni7rh8wzLwDDzPwIHRKySUlTF1ZBkCI4myzh2ZU8iLjkoj93yxUfoiOYtwQInIi1Qx93rgAJuEWdBwCtOBTxF2No_uAzHkLPUzNJ9y49OqGFltX10N0ncfaWxxAm7RdkmshYuensu7d2UE3uO-a0YQxJt00zgNe65QgjLjXITnTQDxGB7VuIpz8zDl6uV0-L-6z1dPdw-J6lRlGZcoENdyuJZeiVqIQRvAyByG4kcwoYDlQztcFcKlqwUhZgFUFLe2ayVJBrgWbo_Pd3T50bwPEVG26IfjpZZWXoqCMFWpLXewoE7oYA9RVH1yrw1hRUm3tVjdsufy2-zjBZzs4RPPH_dtnX-MreT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864133496</pqid></control><display><type>article</type><title>Direct measurements of size-independent lithium diffusion and reaction times in individual polycrystalline battery particles</title><source>Royal Society Of Chemistry Journals</source><creator>Min, Jinhong ; Gubow, Lindsay M ; Hargrave, Riley J ; Siegel, Jason B ; Li, Yiyang</creator><creatorcontrib>Min, Jinhong ; Gubow, Lindsay M ; Hargrave, Riley J ; Siegel, Jason B ; Li, Yiyang</creatorcontrib><description>Polycrystalline Li(Ni,Mn,Co)O 2 (NMC) secondary particles are the most common cathode materials for Li-ion batteries. During electrochemical (dis)charge, lithium is believed to diffuse through the bulk and enter (leave) the secondary particle at the surface. Based on this model, smaller particles would cycle faster due to shorter diffusion lengths and larger surface-area-to-volume ratios. In this work, we evaluate this widespread assumption by developing a new high-throughput single-particle electrochemistry platform using the multi-electrode array from neuroscience. By measuring the reaction and diffusion times for 21 individual particles in liquid electrolytes, we find no correlation between the particle size and either the reaction or diffusion times, which is in stark contrast to the prevailing lithium transport model. We propose that electrochemical reactions occur inside secondary particles, likely due to electrolyte penetration into cracks. Our high-throughput, single-particle electrochemical platform further opens new frontiers for robust, statistical quantification of individual particles in electrochemical systems. A newly developed single-particle electrochemistry platform conducted on NMC cathodes for Li-ion batteries shows that smaller particles do not have faster charging and discharge rates than larger ones.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d3ee00953j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical reactions ; Diffusion ; Diffusion rate ; Electrochemistry ; Electrode materials ; Electrolytes ; Lithium ; Lithium-ion batteries ; Nervous system ; Polycrystals ; Rechargeable batteries</subject><ispartof>Energy &amp; environmental science, 2023-09, Vol.16 (9), p.3847-3859</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-61c5db7576f9646c6582e665c73c9e32e155b4e579f63084ed9418db3789e2a63</citedby><cites>FETCH-LOGICAL-c317t-61c5db7576f9646c6582e665c73c9e32e155b4e579f63084ed9418db3789e2a63</cites><orcidid>0000-0002-5809-6901 ; 0000-0003-2824-013X ; 0009-0000-0750-0479 ; 0000-0002-4320-3807 ; 0000-0002-7721-482X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Min, Jinhong</creatorcontrib><creatorcontrib>Gubow, Lindsay M</creatorcontrib><creatorcontrib>Hargrave, Riley J</creatorcontrib><creatorcontrib>Siegel, Jason B</creatorcontrib><creatorcontrib>Li, Yiyang</creatorcontrib><title>Direct measurements of size-independent lithium diffusion and reaction times in individual polycrystalline battery particles</title><title>Energy &amp; environmental science</title><description>Polycrystalline Li(Ni,Mn,Co)O 2 (NMC) secondary particles are the most common cathode materials for Li-ion batteries. During electrochemical (dis)charge, lithium is believed to diffuse through the bulk and enter (leave) the secondary particle at the surface. Based on this model, smaller particles would cycle faster due to shorter diffusion lengths and larger surface-area-to-volume ratios. In this work, we evaluate this widespread assumption by developing a new high-throughput single-particle electrochemistry platform using the multi-electrode array from neuroscience. By measuring the reaction and diffusion times for 21 individual particles in liquid electrolytes, we find no correlation between the particle size and either the reaction or diffusion times, which is in stark contrast to the prevailing lithium transport model. We propose that electrochemical reactions occur inside secondary particles, likely due to electrolyte penetration into cracks. Our high-throughput, single-particle electrochemical platform further opens new frontiers for robust, statistical quantification of individual particles in electrochemical systems. A newly developed single-particle electrochemistry platform conducted on NMC cathodes for Li-ion batteries shows that smaller particles do not have faster charging and discharge rates than larger ones.</description><subject>Chemical reactions</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nervous system</subject><subject>Polycrystals</subject><subject>Rechargeable batteries</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMouK5evAsBb0I1aZqkOcq6frHgRc8lm0wxS5vWJBUq_ni7rh8wzLwDDzPwIHRKySUlTF1ZBkCI4myzh2ZU8iLjkoj93yxUfoiOYtwQInIi1Qx93rgAJuEWdBwCtOBTxF2No_uAzHkLPUzNJ9y49OqGFltX10N0ncfaWxxAm7RdkmshYuensu7d2UE3uO-a0YQxJt00zgNe65QgjLjXITnTQDxGB7VuIpz8zDl6uV0-L-6z1dPdw-J6lRlGZcoENdyuJZeiVqIQRvAyByG4kcwoYDlQztcFcKlqwUhZgFUFLe2ayVJBrgWbo_Pd3T50bwPEVG26IfjpZZWXoqCMFWpLXewoE7oYA9RVH1yrw1hRUm3tVjdsufy2-zjBZzs4RPPH_dtnX-MreT8</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Min, Jinhong</creator><creator>Gubow, Lindsay M</creator><creator>Hargrave, Riley J</creator><creator>Siegel, Jason B</creator><creator>Li, Yiyang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5809-6901</orcidid><orcidid>https://orcid.org/0000-0003-2824-013X</orcidid><orcidid>https://orcid.org/0009-0000-0750-0479</orcidid><orcidid>https://orcid.org/0000-0002-4320-3807</orcidid><orcidid>https://orcid.org/0000-0002-7721-482X</orcidid></search><sort><creationdate>20230913</creationdate><title>Direct measurements of size-independent lithium diffusion and reaction times in individual polycrystalline battery particles</title><author>Min, Jinhong ; Gubow, Lindsay M ; Hargrave, Riley J ; Siegel, Jason B ; Li, Yiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-61c5db7576f9646c6582e665c73c9e32e155b4e579f63084ed9418db3789e2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reactions</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nervous system</topic><topic>Polycrystals</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Jinhong</creatorcontrib><creatorcontrib>Gubow, Lindsay M</creatorcontrib><creatorcontrib>Hargrave, Riley J</creatorcontrib><creatorcontrib>Siegel, Jason B</creatorcontrib><creatorcontrib>Li, Yiyang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Jinhong</au><au>Gubow, Lindsay M</au><au>Hargrave, Riley J</au><au>Siegel, Jason B</au><au>Li, Yiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct measurements of size-independent lithium diffusion and reaction times in individual polycrystalline battery particles</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-09-13</date><risdate>2023</risdate><volume>16</volume><issue>9</issue><spage>3847</spage><epage>3859</epage><pages>3847-3859</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Polycrystalline Li(Ni,Mn,Co)O 2 (NMC) secondary particles are the most common cathode materials for Li-ion batteries. During electrochemical (dis)charge, lithium is believed to diffuse through the bulk and enter (leave) the secondary particle at the surface. Based on this model, smaller particles would cycle faster due to shorter diffusion lengths and larger surface-area-to-volume ratios. In this work, we evaluate this widespread assumption by developing a new high-throughput single-particle electrochemistry platform using the multi-electrode array from neuroscience. By measuring the reaction and diffusion times for 21 individual particles in liquid electrolytes, we find no correlation between the particle size and either the reaction or diffusion times, which is in stark contrast to the prevailing lithium transport model. We propose that electrochemical reactions occur inside secondary particles, likely due to electrolyte penetration into cracks. Our high-throughput, single-particle electrochemical platform further opens new frontiers for robust, statistical quantification of individual particles in electrochemical systems. A newly developed single-particle electrochemistry platform conducted on NMC cathodes for Li-ion batteries shows that smaller particles do not have faster charging and discharge rates than larger ones.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ee00953j</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5809-6901</orcidid><orcidid>https://orcid.org/0000-0003-2824-013X</orcidid><orcidid>https://orcid.org/0009-0000-0750-0479</orcidid><orcidid>https://orcid.org/0000-0002-4320-3807</orcidid><orcidid>https://orcid.org/0000-0002-7721-482X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-09, Vol.16 (9), p.3847-3859
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_D3EE00953J
source Royal Society Of Chemistry Journals
subjects Chemical reactions
Diffusion
Diffusion rate
Electrochemistry
Electrode materials
Electrolytes
Lithium
Lithium-ion batteries
Nervous system
Polycrystals
Rechargeable batteries
title Direct measurements of size-independent lithium diffusion and reaction times in individual polycrystalline battery particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20measurements%20of%20size-independent%20lithium%20diffusion%20and%20reaction%20times%20in%20individual%20polycrystalline%20battery%20particles&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Min,%20Jinhong&rft.date=2023-09-13&rft.volume=16&rft.issue=9&rft.spage=3847&rft.epage=3859&rft.pages=3847-3859&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d3ee00953j&rft_dat=%3Cproquest_cross%3E2864133496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864133496&rft_id=info:pmid/&rfr_iscdi=true