Automated approaches, reaction parameterisation, and data science in organometallic chemistry and catalysis: towards improving synthetic chemistry and accelerating mechanistic understanding

Automation technologies and data science techniques have been successfully applied to optimisation and discovery activities in the chemical sciences for decades. As the sophistication of these techniques and technologies have evolved, so too has the ambition to expand their scope of application to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital discovery 2024-08, Vol.3 (8), p.1467-1495
Hauptverfasser: Smith, Stuart C, Horbaczewskyj, Christopher S, Tanner, Theo F. N, Walder, Jacob J, Fairlamb, Ian J. S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1495
container_issue 8
container_start_page 1467
container_title Digital discovery
container_volume 3
creator Smith, Stuart C
Horbaczewskyj, Christopher S
Tanner, Theo F. N
Walder, Jacob J
Fairlamb, Ian J. S
description Automation technologies and data science techniques have been successfully applied to optimisation and discovery activities in the chemical sciences for decades. As the sophistication of these techniques and technologies have evolved, so too has the ambition to expand their scope of application to problems of significant synthetic difficulty. Of these applications, some of the most challenging involve investigation of chemical mechanism in organometallic processes (with particular emphasis on air- and moisture-sensitive processes), particularly with the reagent and/or catalyst used. We discuss herein the development of enabling methodologies to allow the study of these challenging systems and highlight some important applications of these technologies in problems of considerable interest to applied synthetic chemists. This review discusses the use of automation for organometallic reactions to generate rich datasets and, with statistical analysis and reaction component parameterisation, how organometallic reaction mechanisms can be probed to gain understanding.
doi_str_mv 10.1039/d3dd00249g
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3DD00249G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3dd00249g</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-255412166b841e27da178c9fcd7755e12ece06fdb1768133b22c469171af68d63</originalsourceid><addsrcrecordid>eNpl0VFLwzAQAOAiCg7di-9CnmXVJmnT1rex6RQGvij4Vm7JdYu0aUkypT_O_2a2iQo-5ch9dwd3UXRBk2ua8PJGcaWShKXl-igaMcGzOCmL1-M_8Wk0du4tCSjPKeViFH1Ot75rwaMi0Pe2A7lBNyEWQXrdGdKDhRY9Wu1g9zEhYBRR4IE4qdFIJNqQzq7BdMFB02hJQo9WO2-HPZYBN4PT7pb47gOsckS3YdS7NmviBuM36P8VgZTYoA0zA2pRbsCEZGBbo9A6H0zInEcnNTQOx9_vWfRyf_c8e4iXT4vH2XQZS5YWPmZZllJGhVgVKUWWK6B5IctaqjzPMqQMJSaiViuai4JyvmJMpqKkOYVaFErws-jq0FfazjmLddVb3YIdKppUu91Xcz6f73e_CPjygK2TP-73NvwLw4qHNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated approaches, reaction parameterisation, and data science in organometallic chemistry and catalysis: towards improving synthetic chemistry and accelerating mechanistic understanding</title><source>DOAJ Directory of Open Access Journals</source><creator>Smith, Stuart C ; Horbaczewskyj, Christopher S ; Tanner, Theo F. N ; Walder, Jacob J ; Fairlamb, Ian J. S</creator><creatorcontrib>Smith, Stuart C ; Horbaczewskyj, Christopher S ; Tanner, Theo F. N ; Walder, Jacob J ; Fairlamb, Ian J. S</creatorcontrib><description>Automation technologies and data science techniques have been successfully applied to optimisation and discovery activities in the chemical sciences for decades. As the sophistication of these techniques and technologies have evolved, so too has the ambition to expand their scope of application to problems of significant synthetic difficulty. Of these applications, some of the most challenging involve investigation of chemical mechanism in organometallic processes (with particular emphasis on air- and moisture-sensitive processes), particularly with the reagent and/or catalyst used. We discuss herein the development of enabling methodologies to allow the study of these challenging systems and highlight some important applications of these technologies in problems of considerable interest to applied synthetic chemists. This review discusses the use of automation for organometallic reactions to generate rich datasets and, with statistical analysis and reaction component parameterisation, how organometallic reaction mechanisms can be probed to gain understanding.</description><identifier>ISSN: 2635-098X</identifier><identifier>EISSN: 2635-098X</identifier><identifier>DOI: 10.1039/d3dd00249g</identifier><language>eng</language><ispartof>Digital discovery, 2024-08, Vol.3 (8), p.1467-1495</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c248t-255412166b841e27da178c9fcd7755e12ece06fdb1768133b22c469171af68d63</cites><orcidid>0000-0001-7149-0463 ; 0000-0003-2393-0246 ; 0000-0002-7555-2761 ; 0000-0001-7563-9325 ; 0000-0002-7024-3193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Smith, Stuart C</creatorcontrib><creatorcontrib>Horbaczewskyj, Christopher S</creatorcontrib><creatorcontrib>Tanner, Theo F. N</creatorcontrib><creatorcontrib>Walder, Jacob J</creatorcontrib><creatorcontrib>Fairlamb, Ian J. S</creatorcontrib><title>Automated approaches, reaction parameterisation, and data science in organometallic chemistry and catalysis: towards improving synthetic chemistry and accelerating mechanistic understanding</title><title>Digital discovery</title><description>Automation technologies and data science techniques have been successfully applied to optimisation and discovery activities in the chemical sciences for decades. As the sophistication of these techniques and technologies have evolved, so too has the ambition to expand their scope of application to problems of significant synthetic difficulty. Of these applications, some of the most challenging involve investigation of chemical mechanism in organometallic processes (with particular emphasis on air- and moisture-sensitive processes), particularly with the reagent and/or catalyst used. We discuss herein the development of enabling methodologies to allow the study of these challenging systems and highlight some important applications of these technologies in problems of considerable interest to applied synthetic chemists. This review discusses the use of automation for organometallic reactions to generate rich datasets and, with statistical analysis and reaction component parameterisation, how organometallic reaction mechanisms can be probed to gain understanding.</description><issn>2635-098X</issn><issn>2635-098X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpl0VFLwzAQAOAiCg7di-9CnmXVJmnT1rex6RQGvij4Vm7JdYu0aUkypT_O_2a2iQo-5ch9dwd3UXRBk2ua8PJGcaWShKXl-igaMcGzOCmL1-M_8Wk0du4tCSjPKeViFH1Ot75rwaMi0Pe2A7lBNyEWQXrdGdKDhRY9Wu1g9zEhYBRR4IE4qdFIJNqQzq7BdMFB02hJQo9WO2-HPZYBN4PT7pb47gOsckS3YdS7NmviBuM36P8VgZTYoA0zA2pRbsCEZGBbo9A6H0zInEcnNTQOx9_vWfRyf_c8e4iXT4vH2XQZS5YWPmZZllJGhVgVKUWWK6B5IctaqjzPMqQMJSaiViuai4JyvmJMpqKkOYVaFErws-jq0FfazjmLddVb3YIdKppUu91Xcz6f73e_CPjygK2TP-73NvwLw4qHNA</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Smith, Stuart C</creator><creator>Horbaczewskyj, Christopher S</creator><creator>Tanner, Theo F. N</creator><creator>Walder, Jacob J</creator><creator>Fairlamb, Ian J. S</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7149-0463</orcidid><orcidid>https://orcid.org/0000-0003-2393-0246</orcidid><orcidid>https://orcid.org/0000-0002-7555-2761</orcidid><orcidid>https://orcid.org/0000-0001-7563-9325</orcidid><orcidid>https://orcid.org/0000-0002-7024-3193</orcidid></search><sort><creationdate>20240807</creationdate><title>Automated approaches, reaction parameterisation, and data science in organometallic chemistry and catalysis: towards improving synthetic chemistry and accelerating mechanistic understanding</title><author>Smith, Stuart C ; Horbaczewskyj, Christopher S ; Tanner, Theo F. N ; Walder, Jacob J ; Fairlamb, Ian J. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-255412166b841e27da178c9fcd7755e12ece06fdb1768133b22c469171af68d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Stuart C</creatorcontrib><creatorcontrib>Horbaczewskyj, Christopher S</creatorcontrib><creatorcontrib>Tanner, Theo F. N</creatorcontrib><creatorcontrib>Walder, Jacob J</creatorcontrib><creatorcontrib>Fairlamb, Ian J. S</creatorcontrib><collection>CrossRef</collection><jtitle>Digital discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Stuart C</au><au>Horbaczewskyj, Christopher S</au><au>Tanner, Theo F. N</au><au>Walder, Jacob J</au><au>Fairlamb, Ian J. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated approaches, reaction parameterisation, and data science in organometallic chemistry and catalysis: towards improving synthetic chemistry and accelerating mechanistic understanding</atitle><jtitle>Digital discovery</jtitle><date>2024-08-07</date><risdate>2024</risdate><volume>3</volume><issue>8</issue><spage>1467</spage><epage>1495</epage><pages>1467-1495</pages><issn>2635-098X</issn><eissn>2635-098X</eissn><abstract>Automation technologies and data science techniques have been successfully applied to optimisation and discovery activities in the chemical sciences for decades. As the sophistication of these techniques and technologies have evolved, so too has the ambition to expand their scope of application to problems of significant synthetic difficulty. Of these applications, some of the most challenging involve investigation of chemical mechanism in organometallic processes (with particular emphasis on air- and moisture-sensitive processes), particularly with the reagent and/or catalyst used. We discuss herein the development of enabling methodologies to allow the study of these challenging systems and highlight some important applications of these technologies in problems of considerable interest to applied synthetic chemists. This review discusses the use of automation for organometallic reactions to generate rich datasets and, with statistical analysis and reaction component parameterisation, how organometallic reaction mechanisms can be probed to gain understanding.</abstract><doi>10.1039/d3dd00249g</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-7149-0463</orcidid><orcidid>https://orcid.org/0000-0003-2393-0246</orcidid><orcidid>https://orcid.org/0000-0002-7555-2761</orcidid><orcidid>https://orcid.org/0000-0001-7563-9325</orcidid><orcidid>https://orcid.org/0000-0002-7024-3193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2635-098X
ispartof Digital discovery, 2024-08, Vol.3 (8), p.1467-1495
issn 2635-098X
2635-098X
language eng
recordid cdi_crossref_primary_10_1039_D3DD00249G
source DOAJ Directory of Open Access Journals
title Automated approaches, reaction parameterisation, and data science in organometallic chemistry and catalysis: towards improving synthetic chemistry and accelerating mechanistic understanding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20approaches,%20reaction%20parameterisation,%20and%20data%20science%20in%20organometallic%20chemistry%20and%20catalysis:%20towards%20improving%20synthetic%20chemistry%20and%20accelerating%20mechanistic%20understanding&rft.jtitle=Digital%20discovery&rft.au=Smith,%20Stuart%20C&rft.date=2024-08-07&rft.volume=3&rft.issue=8&rft.spage=1467&rft.epage=1495&rft.pages=1467-1495&rft.issn=2635-098X&rft.eissn=2635-098X&rft_id=info:doi/10.1039/d3dd00249g&rft_dat=%3Crsc_cross%3Ed3dd00249g%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true