Impact of long-range attraction on desorption kinetics
Desorption of molecules from surfaces is widespread both in nature and technology. Despite its omnipresence and conceptual simplicity, fundamental details can be surprisingly complex and are often poorly understood. In many cases, first-order kinetics is assumed, which implies that the adsorbates do...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-04, Vol.26 (16), p.12282-12288 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12288 |
---|---|
container_issue | 16 |
container_start_page | 12282 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Schneider, Florian Höltkemeier, Lukas Floris, Andrea Kantorovich, Lev Bechstein, Ralf Kühnle, Angelika |
description | Desorption of molecules from surfaces is widespread both in nature and technology. Despite its omnipresence and conceptual simplicity, fundamental details can be surprisingly complex and are often poorly understood. In many cases, first-order kinetics is assumed, which implies that the adsorbates do not interact with each other and desorption is the rate-limiting process. While this might be a good approximation in some cases, it is far from reality in the case of adsorbates that form ordered structures. Here, we study the desorption of a submonolayer film of 3-nitrophenol from the natural cleavage plane of calcite kept in ultrahigh vacuum. Interestingly, two distinctly different desorption regimes are observed during isothermal desorption monitored by dynamic atomic force microscopy. Initially, at high coverages, the coverage decreases almost linearly in time, indicating a constant desorption rate. Beyond this linear regime, at low coverages, a drastic increase in desorption rate is observed until the surface is completely empty. The transition between these two regimes is associated with a critical island width. We propose an existence of a long-range attractive interaction between the molecules as a possible explanation for the sudden increase in the desorption rate when a critical island width is reached. The herein observed phenomenon of two different desorption regimes is expected to be of general nature when interactions beyond next-neighbour attraction are present.
Isothermal desorption of molecules from a surface exhibits two distinctly different desorption regimes. A long-range attraction is a plausible explanation for the existence of these two regimes. |
doi_str_mv | 10.1039/d3cp05465a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3CP05465A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044388186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b1b99b0c7f06cbdf004e9460eb83f60d57076ff3d29f4781729c1eff9f3afb2e3</originalsourceid><addsrcrecordid>eNpdkc9LwzAUx4Mobk4v3pWBFxGqSV6aJscxfw0GetBzSdNkdLZNTdqD_71xmxOEB-_Xhy-P70PonOBbgkHelaA7nDKeqgM0JoxDIrFgh_s64yN0EsIaY0xSAsdoBIJRLrJ0jPii6ZTup85Oa9euEq_alZmqvvdxWrl2GqM0wflu031UrekrHU7RkVV1MGe7PEHvjw9v8-dk-fK0mM-WiQagfVKQQsoC68xirovSYsyMZBybQoDluEyzeJy1UFJpWSZIRqUmxlppQdmCGpig661u593nYEKfN1XQpq5Va9wQciqB0YxTyiJ69Q9du8G38bocMGMgBBE8UjdbSnsXgjc273zVKP-VE5z_uJnfw_x14-Yswpc7yaFoTLlHf-2LwMUW8EHvt3_vgG810ng2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044388186</pqid></control><display><type>article</type><title>Impact of long-range attraction on desorption kinetics</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Schneider, Florian ; Höltkemeier, Lukas ; Floris, Andrea ; Kantorovich, Lev ; Bechstein, Ralf ; Kühnle, Angelika</creator><creatorcontrib>Schneider, Florian ; Höltkemeier, Lukas ; Floris, Andrea ; Kantorovich, Lev ; Bechstein, Ralf ; Kühnle, Angelika</creatorcontrib><description>Desorption of molecules from surfaces is widespread both in nature and technology. Despite its omnipresence and conceptual simplicity, fundamental details can be surprisingly complex and are often poorly understood. In many cases, first-order kinetics is assumed, which implies that the adsorbates do not interact with each other and desorption is the rate-limiting process. While this might be a good approximation in some cases, it is far from reality in the case of adsorbates that form ordered structures. Here, we study the desorption of a submonolayer film of 3-nitrophenol from the natural cleavage plane of calcite kept in ultrahigh vacuum. Interestingly, two distinctly different desorption regimes are observed during isothermal desorption monitored by dynamic atomic force microscopy. Initially, at high coverages, the coverage decreases almost linearly in time, indicating a constant desorption rate. Beyond this linear regime, at low coverages, a drastic increase in desorption rate is observed until the surface is completely empty. The transition between these two regimes is associated with a critical island width. We propose an existence of a long-range attractive interaction between the molecules as a possible explanation for the sudden increase in the desorption rate when a critical island width is reached. The herein observed phenomenon of two different desorption regimes is expected to be of general nature when interactions beyond next-neighbour attraction are present.
Isothermal desorption of molecules from a surface exhibits two distinctly different desorption regimes. A long-range attraction is a plausible explanation for the existence of these two regimes.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp05465a</identifier><identifier>PMID: 38426875</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorbates ; Attraction ; Calcite ; Desorption ; Kinetics ; Nitrophenol ; Ultrahigh vacuum</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-04, Vol.26 (16), p.12282-12288</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-b1b99b0c7f06cbdf004e9460eb83f60d57076ff3d29f4781729c1eff9f3afb2e3</cites><orcidid>0000-0001-9379-6834 ; 0009-0003-7155-1651 ; 0000-0003-1214-1006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27902,27903</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38426875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, Florian</creatorcontrib><creatorcontrib>Höltkemeier, Lukas</creatorcontrib><creatorcontrib>Floris, Andrea</creatorcontrib><creatorcontrib>Kantorovich, Lev</creatorcontrib><creatorcontrib>Bechstein, Ralf</creatorcontrib><creatorcontrib>Kühnle, Angelika</creatorcontrib><title>Impact of long-range attraction on desorption kinetics</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Desorption of molecules from surfaces is widespread both in nature and technology. Despite its omnipresence and conceptual simplicity, fundamental details can be surprisingly complex and are often poorly understood. In many cases, first-order kinetics is assumed, which implies that the adsorbates do not interact with each other and desorption is the rate-limiting process. While this might be a good approximation in some cases, it is far from reality in the case of adsorbates that form ordered structures. Here, we study the desorption of a submonolayer film of 3-nitrophenol from the natural cleavage plane of calcite kept in ultrahigh vacuum. Interestingly, two distinctly different desorption regimes are observed during isothermal desorption monitored by dynamic atomic force microscopy. Initially, at high coverages, the coverage decreases almost linearly in time, indicating a constant desorption rate. Beyond this linear regime, at low coverages, a drastic increase in desorption rate is observed until the surface is completely empty. The transition between these two regimes is associated with a critical island width. We propose an existence of a long-range attractive interaction between the molecules as a possible explanation for the sudden increase in the desorption rate when a critical island width is reached. The herein observed phenomenon of two different desorption regimes is expected to be of general nature when interactions beyond next-neighbour attraction are present.
Isothermal desorption of molecules from a surface exhibits two distinctly different desorption regimes. A long-range attraction is a plausible explanation for the existence of these two regimes.</description><subject>Adsorbates</subject><subject>Attraction</subject><subject>Calcite</subject><subject>Desorption</subject><subject>Kinetics</subject><subject>Nitrophenol</subject><subject>Ultrahigh vacuum</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LwzAUx4Mobk4v3pWBFxGqSV6aJscxfw0GetBzSdNkdLZNTdqD_71xmxOEB-_Xhy-P70PonOBbgkHelaA7nDKeqgM0JoxDIrFgh_s64yN0EsIaY0xSAsdoBIJRLrJ0jPii6ZTup85Oa9euEq_alZmqvvdxWrl2GqM0wflu031UrekrHU7RkVV1MGe7PEHvjw9v8-dk-fK0mM-WiQagfVKQQsoC68xirovSYsyMZBybQoDluEyzeJy1UFJpWSZIRqUmxlppQdmCGpig661u593nYEKfN1XQpq5Va9wQciqB0YxTyiJ69Q9du8G38bocMGMgBBE8UjdbSnsXgjc273zVKP-VE5z_uJnfw_x14-Yswpc7yaFoTLlHf-2LwMUW8EHvt3_vgG810ng2</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Schneider, Florian</creator><creator>Höltkemeier, Lukas</creator><creator>Floris, Andrea</creator><creator>Kantorovich, Lev</creator><creator>Bechstein, Ralf</creator><creator>Kühnle, Angelika</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9379-6834</orcidid><orcidid>https://orcid.org/0009-0003-7155-1651</orcidid><orcidid>https://orcid.org/0000-0003-1214-1006</orcidid></search><sort><creationdate>20240424</creationdate><title>Impact of long-range attraction on desorption kinetics</title><author>Schneider, Florian ; Höltkemeier, Lukas ; Floris, Andrea ; Kantorovich, Lev ; Bechstein, Ralf ; Kühnle, Angelika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b1b99b0c7f06cbdf004e9460eb83f60d57076ff3d29f4781729c1eff9f3afb2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorbates</topic><topic>Attraction</topic><topic>Calcite</topic><topic>Desorption</topic><topic>Kinetics</topic><topic>Nitrophenol</topic><topic>Ultrahigh vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Florian</creatorcontrib><creatorcontrib>Höltkemeier, Lukas</creatorcontrib><creatorcontrib>Floris, Andrea</creatorcontrib><creatorcontrib>Kantorovich, Lev</creatorcontrib><creatorcontrib>Bechstein, Ralf</creatorcontrib><creatorcontrib>Kühnle, Angelika</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Florian</au><au>Höltkemeier, Lukas</au><au>Floris, Andrea</au><au>Kantorovich, Lev</au><au>Bechstein, Ralf</au><au>Kühnle, Angelika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of long-range attraction on desorption kinetics</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-04-24</date><risdate>2024</risdate><volume>26</volume><issue>16</issue><spage>12282</spage><epage>12288</epage><pages>12282-12288</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Desorption of molecules from surfaces is widespread both in nature and technology. Despite its omnipresence and conceptual simplicity, fundamental details can be surprisingly complex and are often poorly understood. In many cases, first-order kinetics is assumed, which implies that the adsorbates do not interact with each other and desorption is the rate-limiting process. While this might be a good approximation in some cases, it is far from reality in the case of adsorbates that form ordered structures. Here, we study the desorption of a submonolayer film of 3-nitrophenol from the natural cleavage plane of calcite kept in ultrahigh vacuum. Interestingly, two distinctly different desorption regimes are observed during isothermal desorption monitored by dynamic atomic force microscopy. Initially, at high coverages, the coverage decreases almost linearly in time, indicating a constant desorption rate. Beyond this linear regime, at low coverages, a drastic increase in desorption rate is observed until the surface is completely empty. The transition between these two regimes is associated with a critical island width. We propose an existence of a long-range attractive interaction between the molecules as a possible explanation for the sudden increase in the desorption rate when a critical island width is reached. The herein observed phenomenon of two different desorption regimes is expected to be of general nature when interactions beyond next-neighbour attraction are present.
Isothermal desorption of molecules from a surface exhibits two distinctly different desorption regimes. A long-range attraction is a plausible explanation for the existence of these two regimes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38426875</pmid><doi>10.1039/d3cp05465a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9379-6834</orcidid><orcidid>https://orcid.org/0009-0003-7155-1651</orcidid><orcidid>https://orcid.org/0000-0003-1214-1006</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-04, Vol.26 (16), p.12282-12288 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3CP05465A |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorbates Attraction Calcite Desorption Kinetics Nitrophenol Ultrahigh vacuum |
title | Impact of long-range attraction on desorption kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20long-range%20attraction%20on%20desorption%20kinetics&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Schneider,%20Florian&rft.date=2024-04-24&rft.volume=26&rft.issue=16&rft.spage=12282&rft.epage=12288&rft.pages=12282-12288&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp05465a&rft_dat=%3Cproquest_cross%3E3044388186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044388186&rft_id=info:pmid/38426875&rfr_iscdi=true |