Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds

Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-11, Vol.25 (46), p.31791-3183
Hauptverfasser: Sun, Heng, Tian, Yichen, Fu, Yuna, Lei, Yongrong, Wang, Yani, Yan, Xinrui, Wang, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3183
container_issue 46
container_start_page 31791
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Sun, Heng
Tian, Yichen
Fu, Yuna
Lei, Yongrong
Wang, Yani
Yan, Xinrui
Wang, Jianhua
description Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and in silico approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors. Using atomic force microscopy-based single-molecule force spectroscopy to quantify noncovalent binding between BAX and Bcl-2, and observing that complicated multivalent binding interactions induced stable BAX/Bcl-2 complexes.
doi_str_mv 10.1039/d3cp04351g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3CP04351G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894733600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-b3ff55bc7839caacaaa27432e9a553691a188647ecb5411525a438921d30a21c3</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AiCs7pxbsQ8CJCNelL-sObTJ3CQEE9lzR9HR1dMpN0sKP_uZkdE4SQF8InLw--UXTO6A2jUNzWoFaUg2Dzg2jEeApxQXN-uD9n6XF04tyCUsoEg1H0_d7qeYfx0nSo-g6JUzLsX73Uvm1aJX1rNLG4Rtk50mqPVqrtnSO9rtF2m_CerKzx2Op4VwfXSIV3pLFmSRpjFTriDdFGx8qswx_ak8ro2p1GR03ojWe7Oo4-nx4_Js_x7HX6MrmfxQoY93EFTSNEpbIcCiVlWDLJOCRYSCEgLZhkeZ7yDFUlOGMiEZJDXiSsBioTpmAcXQ19w5BfPTpfLlunsOukRtO7MskLCilkwAO9_EcXprc6TLdVPANIKQ3qelDKGucsNuXKtktpNyWj5TaN8gEmb79pTAO-GLB1au_-0oIfEx2I7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894733600</pqid></control><display><type>article</type><title>Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sun, Heng ; Tian, Yichen ; Fu, Yuna ; Lei, Yongrong ; Wang, Yani ; Yan, Xinrui ; Wang, Jianhua</creator><creatorcontrib>Sun, Heng ; Tian, Yichen ; Fu, Yuna ; Lei, Yongrong ; Wang, Yani ; Yan, Xinrui ; Wang, Jianhua</creatorcontrib><description>Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and in silico approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors. Using atomic force microscopy-based single-molecule force spectroscopy to quantify noncovalent binding between BAX and Bcl-2, and observing that complicated multivalent binding interactions induced stable BAX/Bcl-2 complexes.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp04351g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Binding ; Cell cycle ; Chemical bonds ; Contact angle ; Covalent bonds ; Hydrogen bonding ; Hydrophobicity ; Physical factors ; Poisson distribution ; Proteins ; Thermodynamic models</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (46), p.31791-3183</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-b3ff55bc7839caacaaa27432e9a553691a188647ecb5411525a438921d30a21c3</citedby><cites>FETCH-LOGICAL-c314t-b3ff55bc7839caacaaa27432e9a553691a188647ecb5411525a438921d30a21c3</cites><orcidid>0000-0002-0459-7145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Heng</creatorcontrib><creatorcontrib>Tian, Yichen</creatorcontrib><creatorcontrib>Fu, Yuna</creatorcontrib><creatorcontrib>Lei, Yongrong</creatorcontrib><creatorcontrib>Wang, Yani</creatorcontrib><creatorcontrib>Yan, Xinrui</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><title>Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds</title><title>Physical chemistry chemical physics : PCCP</title><description>Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and in silico approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors. Using atomic force microscopy-based single-molecule force spectroscopy to quantify noncovalent binding between BAX and Bcl-2, and observing that complicated multivalent binding interactions induced stable BAX/Bcl-2 complexes.</description><subject>Binding</subject><subject>Cell cycle</subject><subject>Chemical bonds</subject><subject>Contact angle</subject><subject>Covalent bonds</subject><subject>Hydrogen bonding</subject><subject>Hydrophobicity</subject><subject>Physical factors</subject><subject>Poisson distribution</subject><subject>Proteins</subject><subject>Thermodynamic models</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AiCs7pxbsQ8CJCNelL-sObTJ3CQEE9lzR9HR1dMpN0sKP_uZkdE4SQF8InLw--UXTO6A2jUNzWoFaUg2Dzg2jEeApxQXN-uD9n6XF04tyCUsoEg1H0_d7qeYfx0nSo-g6JUzLsX73Uvm1aJX1rNLG4Rtk50mqPVqrtnSO9rtF2m_CerKzx2Op4VwfXSIV3pLFmSRpjFTriDdFGx8qswx_ak8ro2p1GR03ojWe7Oo4-nx4_Js_x7HX6MrmfxQoY93EFTSNEpbIcCiVlWDLJOCRYSCEgLZhkeZ7yDFUlOGMiEZJDXiSsBioTpmAcXQ19w5BfPTpfLlunsOukRtO7MskLCilkwAO9_EcXprc6TLdVPANIKQ3qelDKGucsNuXKtktpNyWj5TaN8gEmb79pTAO-GLB1au_-0oIfEx2I7w</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Sun, Heng</creator><creator>Tian, Yichen</creator><creator>Fu, Yuna</creator><creator>Lei, Yongrong</creator><creator>Wang, Yani</creator><creator>Yan, Xinrui</creator><creator>Wang, Jianhua</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0459-7145</orcidid></search><sort><creationdate>20231129</creationdate><title>Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds</title><author>Sun, Heng ; Tian, Yichen ; Fu, Yuna ; Lei, Yongrong ; Wang, Yani ; Yan, Xinrui ; Wang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-b3ff55bc7839caacaaa27432e9a553691a188647ecb5411525a438921d30a21c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>Cell cycle</topic><topic>Chemical bonds</topic><topic>Contact angle</topic><topic>Covalent bonds</topic><topic>Hydrogen bonding</topic><topic>Hydrophobicity</topic><topic>Physical factors</topic><topic>Poisson distribution</topic><topic>Proteins</topic><topic>Thermodynamic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Heng</creatorcontrib><creatorcontrib>Tian, Yichen</creatorcontrib><creatorcontrib>Fu, Yuna</creatorcontrib><creatorcontrib>Lei, Yongrong</creatorcontrib><creatorcontrib>Wang, Yani</creatorcontrib><creatorcontrib>Yan, Xinrui</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Heng</au><au>Tian, Yichen</au><au>Fu, Yuna</au><au>Lei, Yongrong</au><au>Wang, Yani</au><au>Yan, Xinrui</au><au>Wang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-11-29</date><risdate>2023</risdate><volume>25</volume><issue>46</issue><spage>31791</spage><epage>3183</epage><pages>31791-3183</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and in silico approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors. Using atomic force microscopy-based single-molecule force spectroscopy to quantify noncovalent binding between BAX and Bcl-2, and observing that complicated multivalent binding interactions induced stable BAX/Bcl-2 complexes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp04351g</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0459-7145</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (46), p.31791-3183
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D3CP04351G
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Binding
Cell cycle
Chemical bonds
Contact angle
Covalent bonds
Hydrogen bonding
Hydrophobicity
Physical factors
Poisson distribution
Proteins
Thermodynamic models
title Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20scale%20quantification%20reveals%20interactions%20underlying%20protein-protein%20interface:%20from%20forces%20to%20non-covalent%20bonds&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Sun,%20Heng&rft.date=2023-11-29&rft.volume=25&rft.issue=46&rft.spage=31791&rft.epage=3183&rft.pages=31791-3183&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp04351g&rft_dat=%3Cproquest_cross%3E2894733600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894733600&rft_id=info:pmid/&rfr_iscdi=true