Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds
Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-11, Vol.25 (46), p.31791-3183 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3183 |
---|---|
container_issue | 46 |
container_start_page | 31791 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Sun, Heng Tian, Yichen Fu, Yuna Lei, Yongrong Wang, Yani Yan, Xinrui Wang, Jianhua |
description | Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and
in silico
approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors.
Using atomic force microscopy-based single-molecule force spectroscopy to quantify noncovalent binding between BAX and Bcl-2, and observing that complicated multivalent binding interactions induced stable BAX/Bcl-2 complexes. |
doi_str_mv | 10.1039/d3cp04351g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3CP04351G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894733600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-b3ff55bc7839caacaaa27432e9a553691a188647ecb5411525a438921d30a21c3</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AiCs7pxbsQ8CJCNelL-sObTJ3CQEE9lzR9HR1dMpN0sKP_uZkdE4SQF8InLw--UXTO6A2jUNzWoFaUg2Dzg2jEeApxQXN-uD9n6XF04tyCUsoEg1H0_d7qeYfx0nSo-g6JUzLsX73Uvm1aJX1rNLG4Rtk50mqPVqrtnSO9rtF2m_CerKzx2Op4VwfXSIV3pLFmSRpjFTriDdFGx8qswx_ak8ro2p1GR03ojWe7Oo4-nx4_Js_x7HX6MrmfxQoY93EFTSNEpbIcCiVlWDLJOCRYSCEgLZhkeZ7yDFUlOGMiEZJDXiSsBioTpmAcXQ19w5BfPTpfLlunsOukRtO7MskLCilkwAO9_EcXprc6TLdVPANIKQ3qelDKGucsNuXKtktpNyWj5TaN8gEmb79pTAO-GLB1au_-0oIfEx2I7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894733600</pqid></control><display><type>article</type><title>Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sun, Heng ; Tian, Yichen ; Fu, Yuna ; Lei, Yongrong ; Wang, Yani ; Yan, Xinrui ; Wang, Jianhua</creator><creatorcontrib>Sun, Heng ; Tian, Yichen ; Fu, Yuna ; Lei, Yongrong ; Wang, Yani ; Yan, Xinrui ; Wang, Jianhua</creatorcontrib><description>Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and
in silico
approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors.
Using atomic force microscopy-based single-molecule force spectroscopy to quantify noncovalent binding between BAX and Bcl-2, and observing that complicated multivalent binding interactions induced stable BAX/Bcl-2 complexes.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp04351g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Binding ; Cell cycle ; Chemical bonds ; Contact angle ; Covalent bonds ; Hydrogen bonding ; Hydrophobicity ; Physical factors ; Poisson distribution ; Proteins ; Thermodynamic models</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (46), p.31791-3183</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-b3ff55bc7839caacaaa27432e9a553691a188647ecb5411525a438921d30a21c3</citedby><cites>FETCH-LOGICAL-c314t-b3ff55bc7839caacaaa27432e9a553691a188647ecb5411525a438921d30a21c3</cites><orcidid>0000-0002-0459-7145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Heng</creatorcontrib><creatorcontrib>Tian, Yichen</creatorcontrib><creatorcontrib>Fu, Yuna</creatorcontrib><creatorcontrib>Lei, Yongrong</creatorcontrib><creatorcontrib>Wang, Yani</creatorcontrib><creatorcontrib>Yan, Xinrui</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><title>Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds</title><title>Physical chemistry chemical physics : PCCP</title><description>Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and
in silico
approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors.
Using atomic force microscopy-based single-molecule force spectroscopy to quantify noncovalent binding between BAX and Bcl-2, and observing that complicated multivalent binding interactions induced stable BAX/Bcl-2 complexes.</description><subject>Binding</subject><subject>Cell cycle</subject><subject>Chemical bonds</subject><subject>Contact angle</subject><subject>Covalent bonds</subject><subject>Hydrogen bonding</subject><subject>Hydrophobicity</subject><subject>Physical factors</subject><subject>Poisson distribution</subject><subject>Proteins</subject><subject>Thermodynamic models</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AiCs7pxbsQ8CJCNelL-sObTJ3CQEE9lzR9HR1dMpN0sKP_uZkdE4SQF8InLw--UXTO6A2jUNzWoFaUg2Dzg2jEeApxQXN-uD9n6XF04tyCUsoEg1H0_d7qeYfx0nSo-g6JUzLsX73Uvm1aJX1rNLG4Rtk50mqPVqrtnSO9rtF2m_CerKzx2Op4VwfXSIV3pLFmSRpjFTriDdFGx8qswx_ak8ro2p1GR03ojWe7Oo4-nx4_Js_x7HX6MrmfxQoY93EFTSNEpbIcCiVlWDLJOCRYSCEgLZhkeZ7yDFUlOGMiEZJDXiSsBioTpmAcXQ19w5BfPTpfLlunsOukRtO7MskLCilkwAO9_EcXprc6TLdVPANIKQ3qelDKGucsNuXKtktpNyWj5TaN8gEmb79pTAO-GLB1au_-0oIfEx2I7w</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Sun, Heng</creator><creator>Tian, Yichen</creator><creator>Fu, Yuna</creator><creator>Lei, Yongrong</creator><creator>Wang, Yani</creator><creator>Yan, Xinrui</creator><creator>Wang, Jianhua</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0459-7145</orcidid></search><sort><creationdate>20231129</creationdate><title>Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds</title><author>Sun, Heng ; Tian, Yichen ; Fu, Yuna ; Lei, Yongrong ; Wang, Yani ; Yan, Xinrui ; Wang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-b3ff55bc7839caacaaa27432e9a553691a188647ecb5411525a438921d30a21c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>Cell cycle</topic><topic>Chemical bonds</topic><topic>Contact angle</topic><topic>Covalent bonds</topic><topic>Hydrogen bonding</topic><topic>Hydrophobicity</topic><topic>Physical factors</topic><topic>Poisson distribution</topic><topic>Proteins</topic><topic>Thermodynamic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Heng</creatorcontrib><creatorcontrib>Tian, Yichen</creatorcontrib><creatorcontrib>Fu, Yuna</creatorcontrib><creatorcontrib>Lei, Yongrong</creatorcontrib><creatorcontrib>Wang, Yani</creatorcontrib><creatorcontrib>Yan, Xinrui</creatorcontrib><creatorcontrib>Wang, Jianhua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Heng</au><au>Tian, Yichen</au><au>Fu, Yuna</au><au>Lei, Yongrong</au><au>Wang, Yani</au><au>Yan, Xinrui</au><au>Wang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-11-29</date><risdate>2023</risdate><volume>25</volume><issue>46</issue><spage>31791</spage><epage>3183</epage><pages>31791-3183</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and
in silico
approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors.
Using atomic force microscopy-based single-molecule force spectroscopy to quantify noncovalent binding between BAX and Bcl-2, and observing that complicated multivalent binding interactions induced stable BAX/Bcl-2 complexes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp04351g</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0459-7145</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (46), p.31791-3183 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D3CP04351G |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Binding Cell cycle Chemical bonds Contact angle Covalent bonds Hydrogen bonding Hydrophobicity Physical factors Poisson distribution Proteins Thermodynamic models |
title | Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20scale%20quantification%20reveals%20interactions%20underlying%20protein-protein%20interface:%20from%20forces%20to%20non-covalent%20bonds&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Sun,%20Heng&rft.date=2023-11-29&rft.volume=25&rft.issue=46&rft.spage=31791&rft.epage=3183&rft.pages=31791-3183&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp04351g&rft_dat=%3Cproquest_cross%3E2894733600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894733600&rft_id=info:pmid/&rfr_iscdi=true |