Momentum matching induced giant magnetoresistance in two-dimensional magnetic tunnel junctions

Giant magnetoresistance was first experimentally discovered in three-dimensional magnetic tunnel junctions (MTJs) in the late 1980s and is of great importance in nonvolatile memory applications. How to achieve a magnetoresistance as large as possible is always a central task in the study of MTJs. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-09, Vol.25 (37), p.25344-25352
Hauptverfasser: Qiu, Yaohua, Liu, Chun-Sheng, Shi, Xingqiang, Zheng, Xiaohong, Zhang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25352
container_issue 37
container_start_page 25344
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Qiu, Yaohua
Liu, Chun-Sheng
Shi, Xingqiang
Zheng, Xiaohong
Zhang, Lei
description Giant magnetoresistance was first experimentally discovered in three-dimensional magnetic tunnel junctions (MTJs) in the late 1980s and is of great importance in nonvolatile memory applications. How to achieve a magnetoresistance as large as possible is always a central task in the study of MTJs. However, it is normally only of the order of magnitude of tens of percent in traditional MTJs. The ideal situation is the metal-insulator transition together with the magnetization reversal of one magnetic lead. In this work, we will show that this can be achieved using a two-dimensional ferromagnetic zigzag SiC nanoribbon junction based on quantum transport calculations performed with a combination of density functional theory and non-equilibrium Green's function. Specifically, with the magnetization configuration switching of the two leads from parallel to anti-parallel, the junction will change abruptly from a conducting state to an insulating state, although the two leads are always metallic, with both spin up and spin down channels crossing the Fermi level simultaneously. Extensive analysis indicates that the insulating state in the anti-parallel magnetic configuration originates not from any present mechanisms that cause full suppression of electron transmission but from momentum direction mismatching. This finding suggests a fantastic mechanism for achieving magnetoresistance or electrical switching in nanoscale devices by manipulating band dispersion. Giant magnetoresistance is obtained in 2D-MTJs of SiC nanoribbons, which arises not from any present mechanisms but from momentum matching/mismatching.
doi_str_mv 10.1039/d3cp03121g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D3CP03121G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869261001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-d5e82f02514a2577a69d7db194b15cdddd5e11acc605f910765e8cec8b2d81ee3</originalsourceid><addsrcrecordid>eNpd0UFLwzAUB_AgCs7pxbtQ8CJCNS9pu_YoU6cw0YNeLVnyWjPaZCYp4rc3bmOCuSTk_V7g_UPIKdAroLy6VlyuKAcG7R4ZQVbwtKJltr87T4pDcuT9klIKOfAReX-yPZow9EkvgvzQpk20UYNElbRamBCvW4PBOvTaB2EkxnoSvmyqdGz02hrRbZGWSRiMwS5ZDkaGWPLH5KARnceT7T4mb_d3r9OHdP48e5zezFPJIQupyrFkDWU5ZILlk4koKjVRC6iyBeRSxZUjgJCyoHlTQRwjNkiU5YKpEhD5mFxs3l05-zmgD3WvvcSuEwbt4GtWFlnBKM9YpOf_6NIOLk6xVhUrIGYT1eVGSWe9d9jUK6d74b5roPVv1PUtn76so55FfLbBzsud-_sK_gNWyXxz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869261001</pqid></control><display><type>article</type><title>Momentum matching induced giant magnetoresistance in two-dimensional magnetic tunnel junctions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Qiu, Yaohua ; Liu, Chun-Sheng ; Shi, Xingqiang ; Zheng, Xiaohong ; Zhang, Lei</creator><creatorcontrib>Qiu, Yaohua ; Liu, Chun-Sheng ; Shi, Xingqiang ; Zheng, Xiaohong ; Zhang, Lei</creatorcontrib><description>Giant magnetoresistance was first experimentally discovered in three-dimensional magnetic tunnel junctions (MTJs) in the late 1980s and is of great importance in nonvolatile memory applications. How to achieve a magnetoresistance as large as possible is always a central task in the study of MTJs. However, it is normally only of the order of magnitude of tens of percent in traditional MTJs. The ideal situation is the metal-insulator transition together with the magnetization reversal of one magnetic lead. In this work, we will show that this can be achieved using a two-dimensional ferromagnetic zigzag SiC nanoribbon junction based on quantum transport calculations performed with a combination of density functional theory and non-equilibrium Green's function. Specifically, with the magnetization configuration switching of the two leads from parallel to anti-parallel, the junction will change abruptly from a conducting state to an insulating state, although the two leads are always metallic, with both spin up and spin down channels crossing the Fermi level simultaneously. Extensive analysis indicates that the insulating state in the anti-parallel magnetic configuration originates not from any present mechanisms that cause full suppression of electron transmission but from momentum direction mismatching. This finding suggests a fantastic mechanism for achieving magnetoresistance or electrical switching in nanoscale devices by manipulating band dispersion. Giant magnetoresistance is obtained in 2D-MTJs of SiC nanoribbons, which arises not from any present mechanisms but from momentum matching/mismatching.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03121g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Configurations ; Density functional theory ; Electrical junctions ; Ferromagnetism ; Giant magnetoresistance ; Green's functions ; Insulation ; Magnetization reversal ; Magnetoresistivity ; Metal-insulator transition ; Momentum ; Nanoribbons ; Nanotechnology devices ; Quantum transport ; Switching ; Tunnel junctions</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (37), p.25344-25352</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-d5e82f02514a2577a69d7db194b15cdddd5e11acc605f910765e8cec8b2d81ee3</citedby><cites>FETCH-LOGICAL-c314t-d5e82f02514a2577a69d7db194b15cdddd5e11acc605f910765e8cec8b2d81ee3</cites><orcidid>0000-0003-2029-1506 ; 0000-0001-8856-9581 ; 0000-0002-3027-1042 ; 0000-0002-8634-8037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Qiu, Yaohua</creatorcontrib><creatorcontrib>Liu, Chun-Sheng</creatorcontrib><creatorcontrib>Shi, Xingqiang</creatorcontrib><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><title>Momentum matching induced giant magnetoresistance in two-dimensional magnetic tunnel junctions</title><title>Physical chemistry chemical physics : PCCP</title><description>Giant magnetoresistance was first experimentally discovered in three-dimensional magnetic tunnel junctions (MTJs) in the late 1980s and is of great importance in nonvolatile memory applications. How to achieve a magnetoresistance as large as possible is always a central task in the study of MTJs. However, it is normally only of the order of magnitude of tens of percent in traditional MTJs. The ideal situation is the metal-insulator transition together with the magnetization reversal of one magnetic lead. In this work, we will show that this can be achieved using a two-dimensional ferromagnetic zigzag SiC nanoribbon junction based on quantum transport calculations performed with a combination of density functional theory and non-equilibrium Green's function. Specifically, with the magnetization configuration switching of the two leads from parallel to anti-parallel, the junction will change abruptly from a conducting state to an insulating state, although the two leads are always metallic, with both spin up and spin down channels crossing the Fermi level simultaneously. Extensive analysis indicates that the insulating state in the anti-parallel magnetic configuration originates not from any present mechanisms that cause full suppression of electron transmission but from momentum direction mismatching. This finding suggests a fantastic mechanism for achieving magnetoresistance or electrical switching in nanoscale devices by manipulating band dispersion. Giant magnetoresistance is obtained in 2D-MTJs of SiC nanoribbons, which arises not from any present mechanisms but from momentum matching/mismatching.</description><subject>Configurations</subject><subject>Density functional theory</subject><subject>Electrical junctions</subject><subject>Ferromagnetism</subject><subject>Giant magnetoresistance</subject><subject>Green's functions</subject><subject>Insulation</subject><subject>Magnetization reversal</subject><subject>Magnetoresistivity</subject><subject>Metal-insulator transition</subject><subject>Momentum</subject><subject>Nanoribbons</subject><subject>Nanotechnology devices</subject><subject>Quantum transport</subject><subject>Switching</subject><subject>Tunnel junctions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0UFLwzAUB_AgCs7pxbtQ8CJCNS9pu_YoU6cw0YNeLVnyWjPaZCYp4rc3bmOCuSTk_V7g_UPIKdAroLy6VlyuKAcG7R4ZQVbwtKJltr87T4pDcuT9klIKOfAReX-yPZow9EkvgvzQpk20UYNElbRamBCvW4PBOvTaB2EkxnoSvmyqdGz02hrRbZGWSRiMwS5ZDkaGWPLH5KARnceT7T4mb_d3r9OHdP48e5zezFPJIQupyrFkDWU5ZILlk4koKjVRC6iyBeRSxZUjgJCyoHlTQRwjNkiU5YKpEhD5mFxs3l05-zmgD3WvvcSuEwbt4GtWFlnBKM9YpOf_6NIOLk6xVhUrIGYT1eVGSWe9d9jUK6d74b5roPVv1PUtn76so55FfLbBzsud-_sK_gNWyXxz</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Qiu, Yaohua</creator><creator>Liu, Chun-Sheng</creator><creator>Shi, Xingqiang</creator><creator>Zheng, Xiaohong</creator><creator>Zhang, Lei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2029-1506</orcidid><orcidid>https://orcid.org/0000-0001-8856-9581</orcidid><orcidid>https://orcid.org/0000-0002-3027-1042</orcidid><orcidid>https://orcid.org/0000-0002-8634-8037</orcidid></search><sort><creationdate>20230927</creationdate><title>Momentum matching induced giant magnetoresistance in two-dimensional magnetic tunnel junctions</title><author>Qiu, Yaohua ; Liu, Chun-Sheng ; Shi, Xingqiang ; Zheng, Xiaohong ; Zhang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-d5e82f02514a2577a69d7db194b15cdddd5e11acc605f910765e8cec8b2d81ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Configurations</topic><topic>Density functional theory</topic><topic>Electrical junctions</topic><topic>Ferromagnetism</topic><topic>Giant magnetoresistance</topic><topic>Green's functions</topic><topic>Insulation</topic><topic>Magnetization reversal</topic><topic>Magnetoresistivity</topic><topic>Metal-insulator transition</topic><topic>Momentum</topic><topic>Nanoribbons</topic><topic>Nanotechnology devices</topic><topic>Quantum transport</topic><topic>Switching</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yaohua</creatorcontrib><creatorcontrib>Liu, Chun-Sheng</creatorcontrib><creatorcontrib>Shi, Xingqiang</creatorcontrib><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Yaohua</au><au>Liu, Chun-Sheng</au><au>Shi, Xingqiang</au><au>Zheng, Xiaohong</au><au>Zhang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Momentum matching induced giant magnetoresistance in two-dimensional magnetic tunnel junctions</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-09-27</date><risdate>2023</risdate><volume>25</volume><issue>37</issue><spage>25344</spage><epage>25352</epage><pages>25344-25352</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Giant magnetoresistance was first experimentally discovered in three-dimensional magnetic tunnel junctions (MTJs) in the late 1980s and is of great importance in nonvolatile memory applications. How to achieve a magnetoresistance as large as possible is always a central task in the study of MTJs. However, it is normally only of the order of magnitude of tens of percent in traditional MTJs. The ideal situation is the metal-insulator transition together with the magnetization reversal of one magnetic lead. In this work, we will show that this can be achieved using a two-dimensional ferromagnetic zigzag SiC nanoribbon junction based on quantum transport calculations performed with a combination of density functional theory and non-equilibrium Green's function. Specifically, with the magnetization configuration switching of the two leads from parallel to anti-parallel, the junction will change abruptly from a conducting state to an insulating state, although the two leads are always metallic, with both spin up and spin down channels crossing the Fermi level simultaneously. Extensive analysis indicates that the insulating state in the anti-parallel magnetic configuration originates not from any present mechanisms that cause full suppression of electron transmission but from momentum direction mismatching. This finding suggests a fantastic mechanism for achieving magnetoresistance or electrical switching in nanoscale devices by manipulating band dispersion. Giant magnetoresistance is obtained in 2D-MTJs of SiC nanoribbons, which arises not from any present mechanisms but from momentum matching/mismatching.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03121g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2029-1506</orcidid><orcidid>https://orcid.org/0000-0001-8856-9581</orcidid><orcidid>https://orcid.org/0000-0002-3027-1042</orcidid><orcidid>https://orcid.org/0000-0002-8634-8037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-09, Vol.25 (37), p.25344-25352
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D3CP03121G
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Configurations
Density functional theory
Electrical junctions
Ferromagnetism
Giant magnetoresistance
Green's functions
Insulation
Magnetization reversal
Magnetoresistivity
Metal-insulator transition
Momentum
Nanoribbons
Nanotechnology devices
Quantum transport
Switching
Tunnel junctions
title Momentum matching induced giant magnetoresistance in two-dimensional magnetic tunnel junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Momentum%20matching%20induced%20giant%20magnetoresistance%20in%20two-dimensional%20magnetic%20tunnel%20junctions&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Qiu,%20Yaohua&rft.date=2023-09-27&rft.volume=25&rft.issue=37&rft.spage=25344&rft.epage=25352&rft.pages=25344-25352&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03121g&rft_dat=%3Cproquest_cross%3E2869261001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869261001&rft_id=info:pmid/&rfr_iscdi=true