Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators

Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-05, Vol.11 (18), p.483-494
Hauptverfasser: Ceamanos, Lorena, Mulder, Dirk J, Kahveci, Zehra, López-Valdeolivas, María, Schenning, Albert P. H. J, Sánchez-Somolinos, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue 18
container_start_page 483
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 11
creator Ceamanos, Lorena
Mulder, Dirk J
Kahveci, Zehra
López-Valdeolivas, María
Schenning, Albert P. H. J
Sánchez-Somolinos, Carlos
description Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields. This work analyses the photomechanical work performance of 4D-printed liquid crystal elastomers under physiological conditions in PBS media.
doi_str_mv 10.1039/d2tb02757g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TB02757G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811653875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-7b844bfdc1426c81ce385e773217a4a9ea83353f86cea1605e45175ca9fb3723</originalsourceid><addsrcrecordid>eNpFkT1PxDAMhiMEAgQs7KBIbEiFfDRNOsLxKSHBcANblabuXVAvOZJ0OAZ-O4GDw4stvY9t-TVCx5RcUMLry46lljAp5GwL7TMiSCEFVdubmrzuoaMY30gORSvFy120xyWpWV3RffT5MvfJL8DMtbNGDzhAXHoXAY-ug4CX81W0fvCzH9F419lks459j_WHb8F9gIMiC0lbZ90MlzfFMliXoMODfR9th01YxZS7YdDxe1fA2qRRJx_iIdrp9RDh6DcfoOnd7XTyUDw93z9Orp4Kw0uSCtmqsmz7ztCSVUZRA1wJkJIzKnWpa9CKc8F7VRnQtCICSkGlMLruWy4ZP0Bn67HL4N9HiKl582NweWPDFKWV4EqKTJ2vKRN8jAH6Jh-y0GHVUNJ8m93csOn1j9n3GT79HTm2C-g26J-1GThZAyGajfr_Lf4FqNyGmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811653875</pqid></control><display><type>article</type><title>Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ceamanos, Lorena ; Mulder, Dirk J ; Kahveci, Zehra ; López-Valdeolivas, María ; Schenning, Albert P. H. J ; Sánchez-Somolinos, Carlos</creator><creatorcontrib>Ceamanos, Lorena ; Mulder, Dirk J ; Kahveci, Zehra ; López-Valdeolivas, María ; Schenning, Albert P. H. J ; Sánchez-Somolinos, Carlos</creatorcontrib><description>Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields. This work analyses the photomechanical work performance of 4D-printed liquid crystal elastomers under physiological conditions in PBS media.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d2tb02757g</identifier><identifier>PMID: 37092961</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Actuators ; Automation ; Azo Compounds ; Bioengineering ; Biomedical engineering ; Buffers ; Contraction ; Elastomers ; Hydrogels ; Liquid Crystals ; Manufacturing engineering ; Microfluidics ; Photoresponse ; Physiology ; Robotics</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2023-05, Vol.11 (18), p.483-494</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-7b844bfdc1426c81ce385e773217a4a9ea83353f86cea1605e45175ca9fb3723</citedby><cites>FETCH-LOGICAL-c340t-7b844bfdc1426c81ce385e773217a4a9ea83353f86cea1605e45175ca9fb3723</cites><orcidid>0000-0002-3485-1984 ; 0000-0003-3900-2866 ; 0000-0002-1768-1813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37092961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ceamanos, Lorena</creatorcontrib><creatorcontrib>Mulder, Dirk J</creatorcontrib><creatorcontrib>Kahveci, Zehra</creatorcontrib><creatorcontrib>López-Valdeolivas, María</creatorcontrib><creatorcontrib>Schenning, Albert P. H. J</creatorcontrib><creatorcontrib>Sánchez-Somolinos, Carlos</creatorcontrib><title>Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields. This work analyses the photomechanical work performance of 4D-printed liquid crystal elastomers under physiological conditions in PBS media.</description><subject>Actuators</subject><subject>Automation</subject><subject>Azo Compounds</subject><subject>Bioengineering</subject><subject>Biomedical engineering</subject><subject>Buffers</subject><subject>Contraction</subject><subject>Elastomers</subject><subject>Hydrogels</subject><subject>Liquid Crystals</subject><subject>Manufacturing engineering</subject><subject>Microfluidics</subject><subject>Photoresponse</subject><subject>Physiology</subject><subject>Robotics</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkT1PxDAMhiMEAgQs7KBIbEiFfDRNOsLxKSHBcANblabuXVAvOZJ0OAZ-O4GDw4stvY9t-TVCx5RcUMLry46lljAp5GwL7TMiSCEFVdubmrzuoaMY30gORSvFy120xyWpWV3RffT5MvfJL8DMtbNGDzhAXHoXAY-ug4CX81W0fvCzH9F419lks459j_WHb8F9gIMiC0lbZ90MlzfFMliXoMODfR9th01YxZS7YdDxe1fA2qRRJx_iIdrp9RDh6DcfoOnd7XTyUDw93z9Orp4Kw0uSCtmqsmz7ztCSVUZRA1wJkJIzKnWpa9CKc8F7VRnQtCICSkGlMLruWy4ZP0Bn67HL4N9HiKl582NweWPDFKWV4EqKTJ2vKRN8jAH6Jh-y0GHVUNJ8m93csOn1j9n3GT79HTm2C-g26J-1GThZAyGajfr_Lf4FqNyGmA</recordid><startdate>20230510</startdate><enddate>20230510</enddate><creator>Ceamanos, Lorena</creator><creator>Mulder, Dirk J</creator><creator>Kahveci, Zehra</creator><creator>López-Valdeolivas, María</creator><creator>Schenning, Albert P. H. J</creator><creator>Sánchez-Somolinos, Carlos</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3485-1984</orcidid><orcidid>https://orcid.org/0000-0003-3900-2866</orcidid><orcidid>https://orcid.org/0000-0002-1768-1813</orcidid></search><sort><creationdate>20230510</creationdate><title>Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators</title><author>Ceamanos, Lorena ; Mulder, Dirk J ; Kahveci, Zehra ; López-Valdeolivas, María ; Schenning, Albert P. H. J ; Sánchez-Somolinos, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-7b844bfdc1426c81ce385e773217a4a9ea83353f86cea1605e45175ca9fb3723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Automation</topic><topic>Azo Compounds</topic><topic>Bioengineering</topic><topic>Biomedical engineering</topic><topic>Buffers</topic><topic>Contraction</topic><topic>Elastomers</topic><topic>Hydrogels</topic><topic>Liquid Crystals</topic><topic>Manufacturing engineering</topic><topic>Microfluidics</topic><topic>Photoresponse</topic><topic>Physiology</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceamanos, Lorena</creatorcontrib><creatorcontrib>Mulder, Dirk J</creatorcontrib><creatorcontrib>Kahveci, Zehra</creatorcontrib><creatorcontrib>López-Valdeolivas, María</creatorcontrib><creatorcontrib>Schenning, Albert P. H. J</creatorcontrib><creatorcontrib>Sánchez-Somolinos, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceamanos, Lorena</au><au>Mulder, Dirk J</au><au>Kahveci, Zehra</au><au>López-Valdeolivas, María</au><au>Schenning, Albert P. H. J</au><au>Sánchez-Somolinos, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2023-05-10</date><risdate>2023</risdate><volume>11</volume><issue>18</issue><spage>483</spage><epage>494</epage><pages>483-494</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields. This work analyses the photomechanical work performance of 4D-printed liquid crystal elastomers under physiological conditions in PBS media.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37092961</pmid><doi>10.1039/d2tb02757g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3485-1984</orcidid><orcidid>https://orcid.org/0000-0003-3900-2866</orcidid><orcidid>https://orcid.org/0000-0002-1768-1813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2023-05, Vol.11 (18), p.483-494
issn 2050-750X
2050-7518
language eng
recordid cdi_crossref_primary_10_1039_D2TB02757G
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Actuators
Automation
Azo Compounds
Bioengineering
Biomedical engineering
Buffers
Contraction
Elastomers
Hydrogels
Liquid Crystals
Manufacturing engineering
Microfluidics
Photoresponse
Physiology
Robotics
title Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photomechanical%20response%20under%20physiological%20conditions%20of%20azobenzene-containing%204D-printed%20liquid%20crystal%20elastomer%20actuators&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Ceamanos,%20Lorena&rft.date=2023-05-10&rft.volume=11&rft.issue=18&rft.spage=483&rft.epage=494&rft.pages=483-494&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d2tb02757g&rft_dat=%3Cproquest_cross%3E2811653875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811653875&rft_id=info:pmid/37092961&rfr_iscdi=true