Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators
Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect the...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-05, Vol.11 (18), p.483-494 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 18 |
container_start_page | 483 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 11 |
creator | Ceamanos, Lorena Mulder, Dirk J Kahveci, Zehra López-Valdeolivas, María Schenning, Albert P. H. J Sánchez-Somolinos, Carlos |
description | Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields.
This work analyses the photomechanical work performance of 4D-printed liquid crystal elastomers under physiological conditions in PBS media. |
doi_str_mv | 10.1039/d2tb02757g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TB02757G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811653875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-7b844bfdc1426c81ce385e773217a4a9ea83353f86cea1605e45175ca9fb3723</originalsourceid><addsrcrecordid>eNpFkT1PxDAMhiMEAgQs7KBIbEiFfDRNOsLxKSHBcANblabuXVAvOZJ0OAZ-O4GDw4stvY9t-TVCx5RcUMLry46lljAp5GwL7TMiSCEFVdubmrzuoaMY30gORSvFy120xyWpWV3RffT5MvfJL8DMtbNGDzhAXHoXAY-ug4CX81W0fvCzH9F419lks459j_WHb8F9gIMiC0lbZ90MlzfFMliXoMODfR9th01YxZS7YdDxe1fA2qRRJx_iIdrp9RDh6DcfoOnd7XTyUDw93z9Orp4Kw0uSCtmqsmz7ztCSVUZRA1wJkJIzKnWpa9CKc8F7VRnQtCICSkGlMLruWy4ZP0Bn67HL4N9HiKl582NweWPDFKWV4EqKTJ2vKRN8jAH6Jh-y0GHVUNJ8m93csOn1j9n3GT79HTm2C-g26J-1GThZAyGajfr_Lf4FqNyGmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811653875</pqid></control><display><type>article</type><title>Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ceamanos, Lorena ; Mulder, Dirk J ; Kahveci, Zehra ; López-Valdeolivas, María ; Schenning, Albert P. H. J ; Sánchez-Somolinos, Carlos</creator><creatorcontrib>Ceamanos, Lorena ; Mulder, Dirk J ; Kahveci, Zehra ; López-Valdeolivas, María ; Schenning, Albert P. H. J ; Sánchez-Somolinos, Carlos</creatorcontrib><description>Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields.
This work analyses the photomechanical work performance of 4D-printed liquid crystal elastomers under physiological conditions in PBS media.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d2tb02757g</identifier><identifier>PMID: 37092961</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Actuators ; Automation ; Azo Compounds ; Bioengineering ; Biomedical engineering ; Buffers ; Contraction ; Elastomers ; Hydrogels ; Liquid Crystals ; Manufacturing engineering ; Microfluidics ; Photoresponse ; Physiology ; Robotics</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2023-05, Vol.11 (18), p.483-494</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-7b844bfdc1426c81ce385e773217a4a9ea83353f86cea1605e45175ca9fb3723</citedby><cites>FETCH-LOGICAL-c340t-7b844bfdc1426c81ce385e773217a4a9ea83353f86cea1605e45175ca9fb3723</cites><orcidid>0000-0002-3485-1984 ; 0000-0003-3900-2866 ; 0000-0002-1768-1813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37092961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ceamanos, Lorena</creatorcontrib><creatorcontrib>Mulder, Dirk J</creatorcontrib><creatorcontrib>Kahveci, Zehra</creatorcontrib><creatorcontrib>López-Valdeolivas, María</creatorcontrib><creatorcontrib>Schenning, Albert P. H. J</creatorcontrib><creatorcontrib>Sánchez-Somolinos, Carlos</creatorcontrib><title>Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields.
This work analyses the photomechanical work performance of 4D-printed liquid crystal elastomers under physiological conditions in PBS media.</description><subject>Actuators</subject><subject>Automation</subject><subject>Azo Compounds</subject><subject>Bioengineering</subject><subject>Biomedical engineering</subject><subject>Buffers</subject><subject>Contraction</subject><subject>Elastomers</subject><subject>Hydrogels</subject><subject>Liquid Crystals</subject><subject>Manufacturing engineering</subject><subject>Microfluidics</subject><subject>Photoresponse</subject><subject>Physiology</subject><subject>Robotics</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkT1PxDAMhiMEAgQs7KBIbEiFfDRNOsLxKSHBcANblabuXVAvOZJ0OAZ-O4GDw4stvY9t-TVCx5RcUMLry46lljAp5GwL7TMiSCEFVdubmrzuoaMY30gORSvFy120xyWpWV3RffT5MvfJL8DMtbNGDzhAXHoXAY-ug4CX81W0fvCzH9F419lks459j_WHb8F9gIMiC0lbZ90MlzfFMliXoMODfR9th01YxZS7YdDxe1fA2qRRJx_iIdrp9RDh6DcfoOnd7XTyUDw93z9Orp4Kw0uSCtmqsmz7ztCSVUZRA1wJkJIzKnWpa9CKc8F7VRnQtCICSkGlMLruWy4ZP0Bn67HL4N9HiKl582NweWPDFKWV4EqKTJ2vKRN8jAH6Jh-y0GHVUNJ8m93csOn1j9n3GT79HTm2C-g26J-1GThZAyGajfr_Lf4FqNyGmA</recordid><startdate>20230510</startdate><enddate>20230510</enddate><creator>Ceamanos, Lorena</creator><creator>Mulder, Dirk J</creator><creator>Kahveci, Zehra</creator><creator>López-Valdeolivas, María</creator><creator>Schenning, Albert P. H. J</creator><creator>Sánchez-Somolinos, Carlos</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3485-1984</orcidid><orcidid>https://orcid.org/0000-0003-3900-2866</orcidid><orcidid>https://orcid.org/0000-0002-1768-1813</orcidid></search><sort><creationdate>20230510</creationdate><title>Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators</title><author>Ceamanos, Lorena ; Mulder, Dirk J ; Kahveci, Zehra ; López-Valdeolivas, María ; Schenning, Albert P. H. J ; Sánchez-Somolinos, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-7b844bfdc1426c81ce385e773217a4a9ea83353f86cea1605e45175ca9fb3723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Automation</topic><topic>Azo Compounds</topic><topic>Bioengineering</topic><topic>Biomedical engineering</topic><topic>Buffers</topic><topic>Contraction</topic><topic>Elastomers</topic><topic>Hydrogels</topic><topic>Liquid Crystals</topic><topic>Manufacturing engineering</topic><topic>Microfluidics</topic><topic>Photoresponse</topic><topic>Physiology</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceamanos, Lorena</creatorcontrib><creatorcontrib>Mulder, Dirk J</creatorcontrib><creatorcontrib>Kahveci, Zehra</creatorcontrib><creatorcontrib>López-Valdeolivas, María</creatorcontrib><creatorcontrib>Schenning, Albert P. H. J</creatorcontrib><creatorcontrib>Sánchez-Somolinos, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceamanos, Lorena</au><au>Mulder, Dirk J</au><au>Kahveci, Zehra</au><au>López-Valdeolivas, María</au><au>Schenning, Albert P. H. J</au><au>Sánchez-Somolinos, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2023-05-10</date><risdate>2023</risdate><volume>11</volume><issue>18</issue><spage>483</spage><epage>494</epage><pages>483-494</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Soft and mechanically responsive actuators hold the promise to revolutionize the design and manufacturing of devices in the areas of microfluidics, soft robotics and biomedical engineering. In many of these applications, the actuators need to operate in a wet environment that can strongly affect their performance. In this paper, we report on the photomechanical response in a biological buffer of azobenzene-containing liquid crystal elastomer (LCE)-based actuators, prepared by four-dimensional (4D) printing. Although the photothermal contribution to the photoresponse is largely cancelled by the heat withdrawing capacity of the employed buffer, a significant photoinduced reversible contraction, in the range of 7% of its initial length, has been achieved under load, taking just a few seconds to reach half of the maximum contraction. Effective photomechanical work performance under physiological conditions has, therefore, been demonstrated in the 4D-printed actuators. Advantageously, the photomechanical response is not sensitive to salts present in the buffer differently to hydrogels with responses highly dependent on the fluid composition. Our work highlights the capabilities of photomechanical actuators, created using 4D printing, when operating under physiological conditions, thus showing their potential for application in the microfluidics and biomedical fields.
This work analyses the photomechanical work performance of 4D-printed liquid crystal elastomers under physiological conditions in PBS media.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37092961</pmid><doi>10.1039/d2tb02757g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3485-1984</orcidid><orcidid>https://orcid.org/0000-0003-3900-2866</orcidid><orcidid>https://orcid.org/0000-0002-1768-1813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2023-05, Vol.11 (18), p.483-494 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2TB02757G |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Actuators Automation Azo Compounds Bioengineering Biomedical engineering Buffers Contraction Elastomers Hydrogels Liquid Crystals Manufacturing engineering Microfluidics Photoresponse Physiology Robotics |
title | Photomechanical response under physiological conditions of azobenzene-containing 4D-printed liquid crystal elastomer actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photomechanical%20response%20under%20physiological%20conditions%20of%20azobenzene-containing%204D-printed%20liquid%20crystal%20elastomer%20actuators&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Ceamanos,%20Lorena&rft.date=2023-05-10&rft.volume=11&rft.issue=18&rft.spage=483&rft.epage=494&rft.pages=483-494&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d2tb02757g&rft_dat=%3Cproquest_cross%3E2811653875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811653875&rft_id=info:pmid/37092961&rfr_iscdi=true |