Heteroatom P filling activates intrinsic S atomic sites of few-layered ZnIn 2 S 4 via modulation of H adsorption kinetics for sacrificial agent-free photocatalytic hydrogen evolution from pure water and seawater

The rational engineering of photocatalytic active sites on an atomic scale with regulated H adsorption energy and accelerated reaction kinetics has been pivotal to realize photocatalytic H 2 evolution reactions (HERs) without sacrificial reagents. Although hydrogen evolution from pure water splittin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-08, Vol.11 (32), p.17079-17090
Hauptverfasser: Ng, Boon-Junn, Chong, Wei-Kean, Putri, Lutfi Kurnianditia, Kong, Xin Ying, Low, Jingxiang, Lee, Hing Wah, Tan, Lling-Lling, Chang, Wei Sea, Chai, Siang-Piao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17090
container_issue 32
container_start_page 17079
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Ng, Boon-Junn
Chong, Wei-Kean
Putri, Lutfi Kurnianditia
Kong, Xin Ying
Low, Jingxiang
Lee, Hing Wah
Tan, Lling-Lling
Chang, Wei Sea
Chai, Siang-Piao
description The rational engineering of photocatalytic active sites on an atomic scale with regulated H adsorption energy and accelerated reaction kinetics has been pivotal to realize photocatalytic H 2 evolution reactions (HERs) without sacrificial reagents. Although hydrogen evolution from pure water splitting is at the forefront of solar H 2 research, photocatalytic seawater splitting is more in line with the notion of sustainable development owing to the limited resources of freshwater. Herein, we report for the first time an H adsorption kinetics-oriented design of two-dimensional (2D) hexagonal ZnIn 2 S 4 (ZIS) atomic layers via heteroatom P doping (ZIS-P) for the modulation of intrinsic S active sites to achieve sacrificial agent-free photocatalytic HERs using both pure water and seawater. Atomic insights from density functional theory (DFT) calculations reveal that non-metal P dopants with different valence electrons and electronegativity than substituted S3 atoms in ZIS give rise to the formation of a new hybridized level with a moderately filled state near the valence band maximum (VBM) and impart redistribution of electron density within the coordination, hence triggering the activation of neighboring S2 atoms. Thus, ZIS-P with tailored S2 atomic sites and fine-tuned electronic structure endows a diminishment in H adsorption–desorption barriers and enables energetically favorable HERs. In particular, the optimal ZIS-P sample demonstrated visible light-driven photocatalytic water splitting without any sacrificial reagents, resulting in H 2 evolution rates of 1.68 μmol h −1 (pure water) and 1.54 μmol h −1 (simulated seawater), respectively. This work presents an approach to engineer the inert active sites, thus alleviating the strength of H adsorption free energy and enhance the HER kinetics.
doi_str_mv 10.1039/D2TA08789H
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA08789H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D2TA08789H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76H-e03d2d7c5131513f3603648b999999862fbf7cb126d4599f57035f1ca4341c463</originalsourceid><addsrcrecordid>eNpFkd1Kw0AQhYMoWGpvfIK5FqKbbLJJLkv9SUFQsFfehOn-tKvpbtndtuQ5fSGTKHpgmDPMx3Bgoug6IbcJodXdfbqak7Ioq_osmqQkJ3GRVez8z5flZTTz_oP0KglhVTWJvmoZpLMY7A5eQem21WYDyIM-YpAetAlOG685vMEA9cbrYWEVKHmKW-ykkwLezdJA2kMZHDXCzopDi0FbM4A1oPDW7cf5UxsZNPegrAOP3GmlucYWcCNNiJWTEvZbGyzHgG3Xo7DthLP9FuTRtofxinJ94P3BSTj1OR2gEeAljsNVdKGw9XL226fR6vFhtajj55en5WL-HPOC1bEkVKSi4HlCk74UZYSyrFxXo0qWqrUq-DpJmcjyqlJ5QWiuEo4ZzRKeMTqNbn7Ocme9d1I1e6d36LomIc3wkOb_IfQbcieBqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heteroatom P filling activates intrinsic S atomic sites of few-layered ZnIn 2 S 4 via modulation of H adsorption kinetics for sacrificial agent-free photocatalytic hydrogen evolution from pure water and seawater</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ng, Boon-Junn ; Chong, Wei-Kean ; Putri, Lutfi Kurnianditia ; Kong, Xin Ying ; Low, Jingxiang ; Lee, Hing Wah ; Tan, Lling-Lling ; Chang, Wei Sea ; Chai, Siang-Piao</creator><creatorcontrib>Ng, Boon-Junn ; Chong, Wei-Kean ; Putri, Lutfi Kurnianditia ; Kong, Xin Ying ; Low, Jingxiang ; Lee, Hing Wah ; Tan, Lling-Lling ; Chang, Wei Sea ; Chai, Siang-Piao</creatorcontrib><description>The rational engineering of photocatalytic active sites on an atomic scale with regulated H adsorption energy and accelerated reaction kinetics has been pivotal to realize photocatalytic H 2 evolution reactions (HERs) without sacrificial reagents. Although hydrogen evolution from pure water splitting is at the forefront of solar H 2 research, photocatalytic seawater splitting is more in line with the notion of sustainable development owing to the limited resources of freshwater. Herein, we report for the first time an H adsorption kinetics-oriented design of two-dimensional (2D) hexagonal ZnIn 2 S 4 (ZIS) atomic layers via heteroatom P doping (ZIS-P) for the modulation of intrinsic S active sites to achieve sacrificial agent-free photocatalytic HERs using both pure water and seawater. Atomic insights from density functional theory (DFT) calculations reveal that non-metal P dopants with different valence electrons and electronegativity than substituted S3 atoms in ZIS give rise to the formation of a new hybridized level with a moderately filled state near the valence band maximum (VBM) and impart redistribution of electron density within the coordination, hence triggering the activation of neighboring S2 atoms. Thus, ZIS-P with tailored S2 atomic sites and fine-tuned electronic structure endows a diminishment in H adsorption–desorption barriers and enables energetically favorable HERs. In particular, the optimal ZIS-P sample demonstrated visible light-driven photocatalytic water splitting without any sacrificial reagents, resulting in H 2 evolution rates of 1.68 μmol h −1 (pure water) and 1.54 μmol h −1 (simulated seawater), respectively. This work presents an approach to engineer the inert active sites, thus alleviating the strength of H adsorption free energy and enhance the HER kinetics.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D2TA08789H</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (32), p.17079-17090</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76H-e03d2d7c5131513f3603648b999999862fbf7cb126d4599f57035f1ca4341c463</citedby><cites>FETCH-LOGICAL-c76H-e03d2d7c5131513f3603648b999999862fbf7cb126d4599f57035f1ca4341c463</cites><orcidid>0000-0002-8635-1762 ; 0000-0003-4521-7951 ; 0000-0003-3492-1388 ; 0000-0002-2486-6357 ; 0000-0001-8232-2393 ; 0000-0002-3766-8413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ng, Boon-Junn</creatorcontrib><creatorcontrib>Chong, Wei-Kean</creatorcontrib><creatorcontrib>Putri, Lutfi Kurnianditia</creatorcontrib><creatorcontrib>Kong, Xin Ying</creatorcontrib><creatorcontrib>Low, Jingxiang</creatorcontrib><creatorcontrib>Lee, Hing Wah</creatorcontrib><creatorcontrib>Tan, Lling-Lling</creatorcontrib><creatorcontrib>Chang, Wei Sea</creatorcontrib><creatorcontrib>Chai, Siang-Piao</creatorcontrib><title>Heteroatom P filling activates intrinsic S atomic sites of few-layered ZnIn 2 S 4 via modulation of H adsorption kinetics for sacrificial agent-free photocatalytic hydrogen evolution from pure water and seawater</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The rational engineering of photocatalytic active sites on an atomic scale with regulated H adsorption energy and accelerated reaction kinetics has been pivotal to realize photocatalytic H 2 evolution reactions (HERs) without sacrificial reagents. Although hydrogen evolution from pure water splitting is at the forefront of solar H 2 research, photocatalytic seawater splitting is more in line with the notion of sustainable development owing to the limited resources of freshwater. Herein, we report for the first time an H adsorption kinetics-oriented design of two-dimensional (2D) hexagonal ZnIn 2 S 4 (ZIS) atomic layers via heteroatom P doping (ZIS-P) for the modulation of intrinsic S active sites to achieve sacrificial agent-free photocatalytic HERs using both pure water and seawater. Atomic insights from density functional theory (DFT) calculations reveal that non-metal P dopants with different valence electrons and electronegativity than substituted S3 atoms in ZIS give rise to the formation of a new hybridized level with a moderately filled state near the valence band maximum (VBM) and impart redistribution of electron density within the coordination, hence triggering the activation of neighboring S2 atoms. Thus, ZIS-P with tailored S2 atomic sites and fine-tuned electronic structure endows a diminishment in H adsorption–desorption barriers and enables energetically favorable HERs. In particular, the optimal ZIS-P sample demonstrated visible light-driven photocatalytic water splitting without any sacrificial reagents, resulting in H 2 evolution rates of 1.68 μmol h −1 (pure water) and 1.54 μmol h −1 (simulated seawater), respectively. This work presents an approach to engineer the inert active sites, thus alleviating the strength of H adsorption free energy and enhance the HER kinetics.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkd1Kw0AQhYMoWGpvfIK5FqKbbLJJLkv9SUFQsFfehOn-tKvpbtndtuQ5fSGTKHpgmDPMx3Bgoug6IbcJodXdfbqak7Ioq_osmqQkJ3GRVez8z5flZTTz_oP0KglhVTWJvmoZpLMY7A5eQem21WYDyIM-YpAetAlOG685vMEA9cbrYWEVKHmKW-ykkwLezdJA2kMZHDXCzopDi0FbM4A1oPDW7cf5UxsZNPegrAOP3GmlucYWcCNNiJWTEvZbGyzHgG3Xo7DthLP9FuTRtofxinJ94P3BSTj1OR2gEeAljsNVdKGw9XL226fR6vFhtajj55en5WL-HPOC1bEkVKSi4HlCk74UZYSyrFxXo0qWqrUq-DpJmcjyqlJ5QWiuEo4ZzRKeMTqNbn7Ocme9d1I1e6d36LomIc3wkOb_IfQbcieBqg</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Ng, Boon-Junn</creator><creator>Chong, Wei-Kean</creator><creator>Putri, Lutfi Kurnianditia</creator><creator>Kong, Xin Ying</creator><creator>Low, Jingxiang</creator><creator>Lee, Hing Wah</creator><creator>Tan, Lling-Lling</creator><creator>Chang, Wei Sea</creator><creator>Chai, Siang-Piao</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8635-1762</orcidid><orcidid>https://orcid.org/0000-0003-4521-7951</orcidid><orcidid>https://orcid.org/0000-0003-3492-1388</orcidid><orcidid>https://orcid.org/0000-0002-2486-6357</orcidid><orcidid>https://orcid.org/0000-0001-8232-2393</orcidid><orcidid>https://orcid.org/0000-0002-3766-8413</orcidid></search><sort><creationdate>20230817</creationdate><title>Heteroatom P filling activates intrinsic S atomic sites of few-layered ZnIn 2 S 4 via modulation of H adsorption kinetics for sacrificial agent-free photocatalytic hydrogen evolution from pure water and seawater</title><author>Ng, Boon-Junn ; Chong, Wei-Kean ; Putri, Lutfi Kurnianditia ; Kong, Xin Ying ; Low, Jingxiang ; Lee, Hing Wah ; Tan, Lling-Lling ; Chang, Wei Sea ; Chai, Siang-Piao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76H-e03d2d7c5131513f3603648b999999862fbf7cb126d4599f57035f1ca4341c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Boon-Junn</creatorcontrib><creatorcontrib>Chong, Wei-Kean</creatorcontrib><creatorcontrib>Putri, Lutfi Kurnianditia</creatorcontrib><creatorcontrib>Kong, Xin Ying</creatorcontrib><creatorcontrib>Low, Jingxiang</creatorcontrib><creatorcontrib>Lee, Hing Wah</creatorcontrib><creatorcontrib>Tan, Lling-Lling</creatorcontrib><creatorcontrib>Chang, Wei Sea</creatorcontrib><creatorcontrib>Chai, Siang-Piao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Boon-Junn</au><au>Chong, Wei-Kean</au><au>Putri, Lutfi Kurnianditia</au><au>Kong, Xin Ying</au><au>Low, Jingxiang</au><au>Lee, Hing Wah</au><au>Tan, Lling-Lling</au><au>Chang, Wei Sea</au><au>Chai, Siang-Piao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroatom P filling activates intrinsic S atomic sites of few-layered ZnIn 2 S 4 via modulation of H adsorption kinetics for sacrificial agent-free photocatalytic hydrogen evolution from pure water and seawater</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-08-17</date><risdate>2023</risdate><volume>11</volume><issue>32</issue><spage>17079</spage><epage>17090</epage><pages>17079-17090</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The rational engineering of photocatalytic active sites on an atomic scale with regulated H adsorption energy and accelerated reaction kinetics has been pivotal to realize photocatalytic H 2 evolution reactions (HERs) without sacrificial reagents. Although hydrogen evolution from pure water splitting is at the forefront of solar H 2 research, photocatalytic seawater splitting is more in line with the notion of sustainable development owing to the limited resources of freshwater. Herein, we report for the first time an H adsorption kinetics-oriented design of two-dimensional (2D) hexagonal ZnIn 2 S 4 (ZIS) atomic layers via heteroatom P doping (ZIS-P) for the modulation of intrinsic S active sites to achieve sacrificial agent-free photocatalytic HERs using both pure water and seawater. Atomic insights from density functional theory (DFT) calculations reveal that non-metal P dopants with different valence electrons and electronegativity than substituted S3 atoms in ZIS give rise to the formation of a new hybridized level with a moderately filled state near the valence band maximum (VBM) and impart redistribution of electron density within the coordination, hence triggering the activation of neighboring S2 atoms. Thus, ZIS-P with tailored S2 atomic sites and fine-tuned electronic structure endows a diminishment in H adsorption–desorption barriers and enables energetically favorable HERs. In particular, the optimal ZIS-P sample demonstrated visible light-driven photocatalytic water splitting without any sacrificial reagents, resulting in H 2 evolution rates of 1.68 μmol h −1 (pure water) and 1.54 μmol h −1 (simulated seawater), respectively. This work presents an approach to engineer the inert active sites, thus alleviating the strength of H adsorption free energy and enhance the HER kinetics.</abstract><doi>10.1039/D2TA08789H</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8635-1762</orcidid><orcidid>https://orcid.org/0000-0003-4521-7951</orcidid><orcidid>https://orcid.org/0000-0003-3492-1388</orcidid><orcidid>https://orcid.org/0000-0002-2486-6357</orcidid><orcidid>https://orcid.org/0000-0001-8232-2393</orcidid><orcidid>https://orcid.org/0000-0002-3766-8413</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-08, Vol.11 (32), p.17079-17090
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D2TA08789H
source Royal Society Of Chemistry Journals 2008-
title Heteroatom P filling activates intrinsic S atomic sites of few-layered ZnIn 2 S 4 via modulation of H adsorption kinetics for sacrificial agent-free photocatalytic hydrogen evolution from pure water and seawater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroatom%20P%20filling%20activates%20intrinsic%20S%20atomic%20sites%20of%20few-layered%20ZnIn%202%20S%204%20via%20modulation%20of%20H%20adsorption%20kinetics%20for%20sacrificial%20agent-free%20photocatalytic%20hydrogen%20evolution%20from%20pure%20water%20and%20seawater&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ng,%20Boon-Junn&rft.date=2023-08-17&rft.volume=11&rft.issue=32&rft.spage=17079&rft.epage=17090&rft.pages=17079-17090&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D2TA08789H&rft_dat=%3Ccrossref%3E10_1039_D2TA08789H%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true