Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity

In this study, we demonstrate multi-high valence 3d transition metal (TM) doping to boost the oxygen evolution reaction (OER) activity and stability of NiFe hydroxide. Self-supported NiFe hydroxides with multiple high valence 3d TM (V 4+ , V 5+ , Ti 3+ , Ti 4+ , Co 3+ , and Cr 3+ ) doping are fabric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2985-2995
Hauptverfasser: Sari, Fitri Nur Indah, Frenel, Gally, Lee, Alex Chinghuan, Huang, Yan-Jia, Su, Yen-Hsun, Ting, Jyh-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2995
container_issue 6
container_start_page 2985
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Sari, Fitri Nur Indah
Frenel, Gally
Lee, Alex Chinghuan
Huang, Yan-Jia
Su, Yen-Hsun
Ting, Jyh-Ming
description In this study, we demonstrate multi-high valence 3d transition metal (TM) doping to boost the oxygen evolution reaction (OER) activity and stability of NiFe hydroxide. Self-supported NiFe hydroxides with multiple high valence 3d TM (V 4+ , V 5+ , Ti 3+ , Ti 4+ , Co 3+ , and Cr 3+ ) doping are fabricated using a facile Ni-corrosion method at room temperature without the use of any additional oxidizing agent. The high-valence metal dopants effectively tune the electronic structure of Ni. In situ Raman, ex situ electron energy-loss spectroscopy, and density functional theory calculations reveal that Cr is advantageous for the formation of oxyhydroxide with the longest Ni-O bond length, facilitating the decomposition of *OOH intermediate species for the generation of O 2 . Additionally, Ti contributes to charge transfer. The optimized NiFe hydroxide with V, Ti, and Cr dopants (FNVTiCr) outperforms the benchmark RuO 2 and reported Ni-based catalyst by exhibiting an overpotential of 240 mV at 100 mA cm −2 and stability for 70 h. Notably, an alkaline electrolyzer with an FNVTiCr anode and Pt/C cathode is also demonstrated with an ultralow cell voltage of 1.49 V to generate a current density of 10 mA cm −2 , which is stable for 100 h, surpassing the benchmark industrial catalyst. This multi-high valence 3d TM doping approach provides a strategy for designing a low-cost, effective, and stable Ni-based catalyst. FeNiVTiCr hydroxide, fabricated through a facile Ni-corrosion method at room temperature, is demonstrated to be an outstanding OER electrocatalyst, outperforming commercial electrocatalysts.
doi_str_mv 10.1039/d2ta07681k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA07681K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774136693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-c0f2006bcacfc29b155a1931ae58153fccf394b8ad603fadb51f8a5a20190f13</originalsourceid><addsrcrecordid>eNpFkM9PwjAYhhujiQS5eDdp4s1k2h90a48ERY2oF-5L17VQHOtsO2T_vQMMfpf3PTz5vi8PANcY3WNExUNJokRZyvHXGRgQxFCSjUV6fuqcX4JRCGvUD0coFWIA1u9tFW2ysssV3MpK10rDEGXUcKOjrGDpGlsvoa3hh51puOpK73a21DC6H-lLGNpGe-s8dLtuqWuot65qo3U19FqqQ9nH1sbuClwYWQU9-sshWMyeFtOXZP75_DqdzBNFOI6JQob0zxVKKqOIKDBjEguKpWYcM2qUMlSMCy7LFFEjy4JhwyWTBGGBDKZDcHtc23j33eoQ87Vrfd1fzEmWjTFNU0F76u5IKe9C8Nrkjbcb6bsco3xvM38ki8nB5lsP3xxhH9SJ-7dNfwFtYXNJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774136693</pqid></control><display><type>article</type><title>Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity</title><source>Royal Society Of Chemistry Journals</source><creator>Sari, Fitri Nur Indah ; Frenel, Gally ; Lee, Alex Chinghuan ; Huang, Yan-Jia ; Su, Yen-Hsun ; Ting, Jyh-Ming</creator><creatorcontrib>Sari, Fitri Nur Indah ; Frenel, Gally ; Lee, Alex Chinghuan ; Huang, Yan-Jia ; Su, Yen-Hsun ; Ting, Jyh-Ming</creatorcontrib><description>In this study, we demonstrate multi-high valence 3d transition metal (TM) doping to boost the oxygen evolution reaction (OER) activity and stability of NiFe hydroxide. Self-supported NiFe hydroxides with multiple high valence 3d TM (V 4+ , V 5+ , Ti 3+ , Ti 4+ , Co 3+ , and Cr 3+ ) doping are fabricated using a facile Ni-corrosion method at room temperature without the use of any additional oxidizing agent. The high-valence metal dopants effectively tune the electronic structure of Ni. In situ Raman, ex situ electron energy-loss spectroscopy, and density functional theory calculations reveal that Cr is advantageous for the formation of oxyhydroxide with the longest Ni-O bond length, facilitating the decomposition of *OOH intermediate species for the generation of O 2 . Additionally, Ti contributes to charge transfer. The optimized NiFe hydroxide with V, Ti, and Cr dopants (FNVTiCr) outperforms the benchmark RuO 2 and reported Ni-based catalyst by exhibiting an overpotential of 240 mV at 100 mA cm −2 and stability for 70 h. Notably, an alkaline electrolyzer with an FNVTiCr anode and Pt/C cathode is also demonstrated with an ultralow cell voltage of 1.49 V to generate a current density of 10 mA cm −2 , which is stable for 100 h, surpassing the benchmark industrial catalyst. This multi-high valence 3d TM doping approach provides a strategy for designing a low-cost, effective, and stable Ni-based catalyst. FeNiVTiCr hydroxide, fabricated through a facile Ni-corrosion method at room temperature, is demonstrated to be an outstanding OER electrocatalyst, outperforming commercial electrocatalysts.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta07681k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Benchmarks ; Catalysts ; Charge transfer ; Chromium ; Density functional theory ; Dopants ; Doping ; Electron energy ; Electron energy loss spectroscopy ; Electronic structure ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Nickel compounds ; Oxidation ; Oxidizing agents ; Oxygen evolution reactions ; Reagents ; Room temperature ; Spectroscopy ; Stability ; Titanium ; Transition metals ; Valence ; Vanadium</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2985-2995</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-c0f2006bcacfc29b155a1931ae58153fccf394b8ad603fadb51f8a5a20190f13</citedby><cites>FETCH-LOGICAL-c281t-c0f2006bcacfc29b155a1931ae58153fccf394b8ad603fadb51f8a5a20190f13</cites><orcidid>0000-0002-9155-7706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sari, Fitri Nur Indah</creatorcontrib><creatorcontrib>Frenel, Gally</creatorcontrib><creatorcontrib>Lee, Alex Chinghuan</creatorcontrib><creatorcontrib>Huang, Yan-Jia</creatorcontrib><creatorcontrib>Su, Yen-Hsun</creatorcontrib><creatorcontrib>Ting, Jyh-Ming</creatorcontrib><title>Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>In this study, we demonstrate multi-high valence 3d transition metal (TM) doping to boost the oxygen evolution reaction (OER) activity and stability of NiFe hydroxide. Self-supported NiFe hydroxides with multiple high valence 3d TM (V 4+ , V 5+ , Ti 3+ , Ti 4+ , Co 3+ , and Cr 3+ ) doping are fabricated using a facile Ni-corrosion method at room temperature without the use of any additional oxidizing agent. The high-valence metal dopants effectively tune the electronic structure of Ni. In situ Raman, ex situ electron energy-loss spectroscopy, and density functional theory calculations reveal that Cr is advantageous for the formation of oxyhydroxide with the longest Ni-O bond length, facilitating the decomposition of *OOH intermediate species for the generation of O 2 . Additionally, Ti contributes to charge transfer. The optimized NiFe hydroxide with V, Ti, and Cr dopants (FNVTiCr) outperforms the benchmark RuO 2 and reported Ni-based catalyst by exhibiting an overpotential of 240 mV at 100 mA cm −2 and stability for 70 h. Notably, an alkaline electrolyzer with an FNVTiCr anode and Pt/C cathode is also demonstrated with an ultralow cell voltage of 1.49 V to generate a current density of 10 mA cm −2 , which is stable for 100 h, surpassing the benchmark industrial catalyst. This multi-high valence 3d TM doping approach provides a strategy for designing a low-cost, effective, and stable Ni-based catalyst. FeNiVTiCr hydroxide, fabricated through a facile Ni-corrosion method at room temperature, is demonstrated to be an outstanding OER electrocatalyst, outperforming commercial electrocatalysts.</description><subject>Benchmarks</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chromium</subject><subject>Density functional theory</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electron energy</subject><subject>Electron energy loss spectroscopy</subject><subject>Electronic structure</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Nickel compounds</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Oxygen evolution reactions</subject><subject>Reagents</subject><subject>Room temperature</subject><subject>Spectroscopy</subject><subject>Stability</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Valence</subject><subject>Vanadium</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM9PwjAYhhujiQS5eDdp4s1k2h90a48ERY2oF-5L17VQHOtsO2T_vQMMfpf3PTz5vi8PANcY3WNExUNJokRZyvHXGRgQxFCSjUV6fuqcX4JRCGvUD0coFWIA1u9tFW2ysssV3MpK10rDEGXUcKOjrGDpGlsvoa3hh51puOpK73a21DC6H-lLGNpGe-s8dLtuqWuot65qo3U19FqqQ9nH1sbuClwYWQU9-sshWMyeFtOXZP75_DqdzBNFOI6JQob0zxVKKqOIKDBjEguKpWYcM2qUMlSMCy7LFFEjy4JhwyWTBGGBDKZDcHtc23j33eoQ87Vrfd1fzEmWjTFNU0F76u5IKe9C8Nrkjbcb6bsco3xvM38ki8nB5lsP3xxhH9SJ-7dNfwFtYXNJ</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Sari, Fitri Nur Indah</creator><creator>Frenel, Gally</creator><creator>Lee, Alex Chinghuan</creator><creator>Huang, Yan-Jia</creator><creator>Su, Yen-Hsun</creator><creator>Ting, Jyh-Ming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9155-7706</orcidid></search><sort><creationdate>20230208</creationdate><title>Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity</title><author>Sari, Fitri Nur Indah ; Frenel, Gally ; Lee, Alex Chinghuan ; Huang, Yan-Jia ; Su, Yen-Hsun ; Ting, Jyh-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-c0f2006bcacfc29b155a1931ae58153fccf394b8ad603fadb51f8a5a20190f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarks</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chromium</topic><topic>Density functional theory</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electron energy</topic><topic>Electron energy loss spectroscopy</topic><topic>Electronic structure</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Nickel compounds</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Oxygen evolution reactions</topic><topic>Reagents</topic><topic>Room temperature</topic><topic>Spectroscopy</topic><topic>Stability</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Valence</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sari, Fitri Nur Indah</creatorcontrib><creatorcontrib>Frenel, Gally</creatorcontrib><creatorcontrib>Lee, Alex Chinghuan</creatorcontrib><creatorcontrib>Huang, Yan-Jia</creatorcontrib><creatorcontrib>Su, Yen-Hsun</creatorcontrib><creatorcontrib>Ting, Jyh-Ming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sari, Fitri Nur Indah</au><au>Frenel, Gally</au><au>Lee, Alex Chinghuan</au><au>Huang, Yan-Jia</au><au>Su, Yen-Hsun</au><au>Ting, Jyh-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-02-08</date><risdate>2023</risdate><volume>11</volume><issue>6</issue><spage>2985</spage><epage>2995</epage><pages>2985-2995</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>In this study, we demonstrate multi-high valence 3d transition metal (TM) doping to boost the oxygen evolution reaction (OER) activity and stability of NiFe hydroxide. Self-supported NiFe hydroxides with multiple high valence 3d TM (V 4+ , V 5+ , Ti 3+ , Ti 4+ , Co 3+ , and Cr 3+ ) doping are fabricated using a facile Ni-corrosion method at room temperature without the use of any additional oxidizing agent. The high-valence metal dopants effectively tune the electronic structure of Ni. In situ Raman, ex situ electron energy-loss spectroscopy, and density functional theory calculations reveal that Cr is advantageous for the formation of oxyhydroxide with the longest Ni-O bond length, facilitating the decomposition of *OOH intermediate species for the generation of O 2 . Additionally, Ti contributes to charge transfer. The optimized NiFe hydroxide with V, Ti, and Cr dopants (FNVTiCr) outperforms the benchmark RuO 2 and reported Ni-based catalyst by exhibiting an overpotential of 240 mV at 100 mA cm −2 and stability for 70 h. Notably, an alkaline electrolyzer with an FNVTiCr anode and Pt/C cathode is also demonstrated with an ultralow cell voltage of 1.49 V to generate a current density of 10 mA cm −2 , which is stable for 100 h, surpassing the benchmark industrial catalyst. This multi-high valence 3d TM doping approach provides a strategy for designing a low-cost, effective, and stable Ni-based catalyst. FeNiVTiCr hydroxide, fabricated through a facile Ni-corrosion method at room temperature, is demonstrated to be an outstanding OER electrocatalyst, outperforming commercial electrocatalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta07681k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9155-7706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-02, Vol.11 (6), p.2985-2995
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D2TA07681K
source Royal Society Of Chemistry Journals
subjects Benchmarks
Catalysts
Charge transfer
Chromium
Density functional theory
Dopants
Doping
Electron energy
Electron energy loss spectroscopy
Electronic structure
Hydroxides
Intermetallic compounds
Iron compounds
Nickel compounds
Oxidation
Oxidizing agents
Oxygen evolution reactions
Reagents
Room temperature
Spectroscopy
Stability
Titanium
Transition metals
Valence
Vanadium
title Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-high%20valence%20state%20metal%20doping%20in%20NiFe%20hydroxide%20toward%20superior%20oxygen%20evolution%20reaction%20activity&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Sari,%20Fitri%20Nur%20Indah&rft.date=2023-02-08&rft.volume=11&rft.issue=6&rft.spage=2985&rft.epage=2995&rft.pages=2985-2995&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta07681k&rft_dat=%3Cproquest_cross%3E2774136693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774136693&rft_id=info:pmid/&rfr_iscdi=true