Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes

Silicon monoxide (SiO) is a potential high-capacity anode material for lithium-ion batteries. The complexity of the lithiation process for SiO and challenges in the characterization of the lithiated products are fundamental aspects that underpin the discovery of the reaction mechanisms. In this work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-11, Vol.1 (44), p.2377-23779
Hauptverfasser: Li, Yang, Zhou, Hongmin, Lin, Ning, Qian, Yitai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23779
container_issue 44
container_start_page 2377
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Li, Yang
Zhou, Hongmin
Lin, Ning
Qian, Yitai
description Silicon monoxide (SiO) is a potential high-capacity anode material for lithium-ion batteries. The complexity of the lithiation process for SiO and challenges in the characterization of the lithiated products are fundamental aspects that underpin the discovery of the reaction mechanisms. In this work, we investigate the size-dependent (micro- and submicro-) electrochemical behaviors of SiO electrodes in terms of the irreversibility/reversibility of electrochemical lithiation/delithiation, interfacial/bulk stability, and interplay between SiO and graphite particles in the blended electrode. The irreversible Li + consumption falls into three categories: O-participating electrochemical reactions of the Li-Si-O system, volume variation-induced inert Li x Si alloy, and continued side reactions caused by the decomposition of the electrolyte. Reducing the particle size of SiO could hinder the formation of isolated inert Li x Si alloys. However, the interfacial decomposition of the electrolyte is serious due to the high specific surface area. For the SiO/graphite blended electrode, it is confirmed that the graphite particles can buffer the volume change of SiO particles to some extent (
doi_str_mv 10.1039/d2ta06943a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA06943A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736148894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-e9fad668748564b2e1d8c5234e38a3c9b32781d7a1fc02af0005e0a102b747c93</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1H_uRPZZqVSgUtD0vs8lsm7Ld1GRb0F9vtFLnMnN4mHnnIeSas3vOZPlgRA8sL1MJZ2QgWMaSIi3z89Os1CUZhbBhsRSLZDkgyzc8ILS2W9F-jTTYL0wM7rAz2PUUW9S9d3qNW6uhpTObhN55WCGtcQ0H63ygrqHvdp7UENBQ6JzBcEUuGmgDjv76kCynT4vJSzKbP79OxrNEC8X7BMsGTJ6rGC3L01ogN0pnQqYoFUhd1lIUipsCeKOZgCbmzpABZ6Iu0kKXckhuj3t33n3sMfTVxu19F09WopA5jy9HHUNyd6S0dyF4bKqdt1vwnxVn1Y-56lEsxr_mxhG-OcI-6BP3b1Z-A_Bfadw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736148894</pqid></control><display><type>article</type><title>Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Yang ; Zhou, Hongmin ; Lin, Ning ; Qian, Yitai</creator><creatorcontrib>Li, Yang ; Zhou, Hongmin ; Lin, Ning ; Qian, Yitai</creatorcontrib><description>Silicon monoxide (SiO) is a potential high-capacity anode material for lithium-ion batteries. The complexity of the lithiation process for SiO and challenges in the characterization of the lithiated products are fundamental aspects that underpin the discovery of the reaction mechanisms. In this work, we investigate the size-dependent (micro- and submicro-) electrochemical behaviors of SiO electrodes in terms of the irreversibility/reversibility of electrochemical lithiation/delithiation, interfacial/bulk stability, and interplay between SiO and graphite particles in the blended electrode. The irreversible Li + consumption falls into three categories: O-participating electrochemical reactions of the Li-Si-O system, volume variation-induced inert Li x Si alloy, and continued side reactions caused by the decomposition of the electrolyte. Reducing the particle size of SiO could hinder the formation of isolated inert Li x Si alloys. However, the interfacial decomposition of the electrolyte is serious due to the high specific surface area. For the SiO/graphite blended electrode, it is confirmed that the graphite particles can buffer the volume change of SiO particles to some extent (&lt;20 wt%), and the by-products of the SiO-related electrolyte decomposition would in turn hinder the lithiation/delithiation process of graphite particles. After decreasing the particle size of SiO, a more homogeneously distributed electrode is obtained and the cycling stability can be improved. The size-dependent electrochemical behaviors in terms of the irreversibility/reversibility of electrochemical lithiation/delithiation, interfacial/bulk stability and the interplays between SiO and graphite particles are investgated.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta06943a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Chemical reactions ; Decomposition ; Decomposition reactions ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Graphite ; Interface stability ; Lithium ; Lithium-ion batteries ; Particle size ; Reaction mechanisms ; Rechargeable batteries ; Side reactions ; Silicon ; Silicon monoxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.1 (44), p.2377-23779</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-e9fad668748564b2e1d8c5234e38a3c9b32781d7a1fc02af0005e0a102b747c93</citedby><cites>FETCH-LOGICAL-c281t-e9fad668748564b2e1d8c5234e38a3c9b32781d7a1fc02af0005e0a102b747c93</cites><orcidid>0000-0002-8029-5595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhou, Hongmin</creatorcontrib><creatorcontrib>Lin, Ning</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><title>Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Silicon monoxide (SiO) is a potential high-capacity anode material for lithium-ion batteries. The complexity of the lithiation process for SiO and challenges in the characterization of the lithiated products are fundamental aspects that underpin the discovery of the reaction mechanisms. In this work, we investigate the size-dependent (micro- and submicro-) electrochemical behaviors of SiO electrodes in terms of the irreversibility/reversibility of electrochemical lithiation/delithiation, interfacial/bulk stability, and interplay between SiO and graphite particles in the blended electrode. The irreversible Li + consumption falls into three categories: O-participating electrochemical reactions of the Li-Si-O system, volume variation-induced inert Li x Si alloy, and continued side reactions caused by the decomposition of the electrolyte. Reducing the particle size of SiO could hinder the formation of isolated inert Li x Si alloys. However, the interfacial decomposition of the electrolyte is serious due to the high specific surface area. For the SiO/graphite blended electrode, it is confirmed that the graphite particles can buffer the volume change of SiO particles to some extent (&lt;20 wt%), and the by-products of the SiO-related electrolyte decomposition would in turn hinder the lithiation/delithiation process of graphite particles. After decreasing the particle size of SiO, a more homogeneously distributed electrode is obtained and the cycling stability can be improved. The size-dependent electrochemical behaviors in terms of the irreversibility/reversibility of electrochemical lithiation/delithiation, interfacial/bulk stability and the interplays between SiO and graphite particles are investgated.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Chemical reactions</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Particle size</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Side reactions</subject><subject>Silicon</subject><subject>Silicon monoxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1H_uRPZZqVSgUtD0vs8lsm7Ld1GRb0F9vtFLnMnN4mHnnIeSas3vOZPlgRA8sL1MJZ2QgWMaSIi3z89Os1CUZhbBhsRSLZDkgyzc8ILS2W9F-jTTYL0wM7rAz2PUUW9S9d3qNW6uhpTObhN55WCGtcQ0H63ygrqHvdp7UENBQ6JzBcEUuGmgDjv76kCynT4vJSzKbP79OxrNEC8X7BMsGTJ6rGC3L01ogN0pnQqYoFUhd1lIUipsCeKOZgCbmzpABZ6Iu0kKXckhuj3t33n3sMfTVxu19F09WopA5jy9HHUNyd6S0dyF4bKqdt1vwnxVn1Y-56lEsxr_mxhG-OcI-6BP3b1Z-A_Bfadw</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Li, Yang</creator><creator>Zhou, Hongmin</creator><creator>Lin, Ning</creator><creator>Qian, Yitai</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8029-5595</orcidid></search><sort><creationdate>20221115</creationdate><title>Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes</title><author>Li, Yang ; Zhou, Hongmin ; Lin, Ning ; Qian, Yitai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-e9fad668748564b2e1d8c5234e38a3c9b32781d7a1fc02af0005e0a102b747c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Chemical reactions</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Particle size</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Side reactions</topic><topic>Silicon</topic><topic>Silicon monoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhou, Hongmin</creatorcontrib><creatorcontrib>Lin, Ning</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Zhou, Hongmin</au><au>Lin, Ning</au><au>Qian, Yitai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-11-15</date><risdate>2022</risdate><volume>1</volume><issue>44</issue><spage>2377</spage><epage>23779</epage><pages>2377-23779</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Silicon monoxide (SiO) is a potential high-capacity anode material for lithium-ion batteries. The complexity of the lithiation process for SiO and challenges in the characterization of the lithiated products are fundamental aspects that underpin the discovery of the reaction mechanisms. In this work, we investigate the size-dependent (micro- and submicro-) electrochemical behaviors of SiO electrodes in terms of the irreversibility/reversibility of electrochemical lithiation/delithiation, interfacial/bulk stability, and interplay between SiO and graphite particles in the blended electrode. The irreversible Li + consumption falls into three categories: O-participating electrochemical reactions of the Li-Si-O system, volume variation-induced inert Li x Si alloy, and continued side reactions caused by the decomposition of the electrolyte. Reducing the particle size of SiO could hinder the formation of isolated inert Li x Si alloys. However, the interfacial decomposition of the electrolyte is serious due to the high specific surface area. For the SiO/graphite blended electrode, it is confirmed that the graphite particles can buffer the volume change of SiO particles to some extent (&lt;20 wt%), and the by-products of the SiO-related electrolyte decomposition would in turn hinder the lithiation/delithiation process of graphite particles. After decreasing the particle size of SiO, a more homogeneously distributed electrode is obtained and the cycling stability can be improved. The size-dependent electrochemical behaviors in terms of the irreversibility/reversibility of electrochemical lithiation/delithiation, interfacial/bulk stability and the interplays between SiO and graphite particles are investgated.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta06943a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8029-5595</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.1 (44), p.2377-23779
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D2TA06943A
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Batteries
Chemical reactions
Decomposition
Decomposition reactions
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Graphite
Interface stability
Lithium
Lithium-ion batteries
Particle size
Reaction mechanisms
Rechargeable batteries
Side reactions
Silicon
Silicon monoxide
title Revealing the size-dependent electrochemical Li-storage behaviors of SiO-based anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20size-dependent%20electrochemical%20Li-storage%20behaviors%20of%20SiO-based%20anodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Yang&rft.date=2022-11-15&rft.volume=1&rft.issue=44&rft.spage=2377&rft.epage=23779&rft.pages=2377-23779&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta06943a&rft_dat=%3Cproquest_cross%3E2736148894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736148894&rft_id=info:pmid/&rfr_iscdi=true