Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance
Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21531-21539 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21539 |
---|---|
container_issue | 4 |
container_start_page | 21531 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 1 |
creator | Wang, Jinjin Zhao, Xiangyuan Kang, Jinzhao Wang, Xiaomei Yu, Hong Du, Cheng-Feng Yan, Qingyu |
description | Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (LiV
3
O
8
@NaV
3
O
8
, LVO@NVO) have been prepared successfully
via
a quick one-pot eutectic oxidation process. When evaluated as a cathode for ZIBs, the LVO@NVO shows an amazing capacity of 476 mA h g
−1
at 0.05 A g
−1
, superior rate properties (236 mA h g
−1
@ 5 A g
−1
), and excellent cycling capability over 2000 cycles with a capacity-retention of 93.4%. Owing to the pre-intercalated Li
+
and Na
+
cations and the resulting bilayer structure, higher pseudocapacitance, faster charge-transfer/ion-diffusion kinetics, and a robust architecture have been achieved in the LVO@NVO cathode, which are responsible for the superior zinc-ion storage performance. Furthermore, the energy storage mechanism based on Zn
2+
and H
+
co-intercalation/extraction has been proved.
Li
+
, Na
+
co-stabilized vanadium oxide nanobelts with a bilayer structure are prepared
via
a quick one-pot eutectic oxidation process. Faster charge-transfer/ion-diffusion kinetics and robust architecture lead to a superior zinc-ion storage performance. |
doi_str_mv | 10.1039/d2ta05803k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA05803K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725818007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-e984ae3ac7dabc060196e142a4214c5db0141245b27dc512332abda05b2e13be3</originalsourceid><addsrcrecordid>eNpFkEtPwzAMgCMEEtPYhTtSJG6IQh7t2h6n8RQTXMa5chIPMrZmJCmw_XoCQ8MXW_JnW_4IOebsgjNZXxoRgRUVk297pCdYwbIyr4f7u7qqDskghDlLUTE2rOsecRN7Th-BapeFCMou7AYN_YAWjO2W1H1Zg7SF1ilcxEA_bXylQBMHa_Q0RN_p2HmkM-epci7ENL2xrc6sa1PbeXhBukKf-ktoNR6RgxksAg7-cp8831xPx3fZ5On2fjyaZFpUPGZYVzmgBF0aUJoNGa-HyHMBueC5LoxiPOciL5QojS64kFKAMul7JZBLhbJPTrd7V969dxhiM3edb9PJRpSiqHgSUCbqbEtp70LwOGtW3i7BrxvOmh-nzZWYjn6dPiT4ZAv7oHfcv3P5DVrxdBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725818007</pqid></control><display><type>article</type><title>Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Jinjin ; Zhao, Xiangyuan ; Kang, Jinzhao ; Wang, Xiaomei ; Yu, Hong ; Du, Cheng-Feng ; Yan, Qingyu</creator><creatorcontrib>Wang, Jinjin ; Zhao, Xiangyuan ; Kang, Jinzhao ; Wang, Xiaomei ; Yu, Hong ; Du, Cheng-Feng ; Yan, Qingyu</creatorcontrib><description>Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (LiV
3
O
8
@NaV
3
O
8
, LVO@NVO) have been prepared successfully
via
a quick one-pot eutectic oxidation process. When evaluated as a cathode for ZIBs, the LVO@NVO shows an amazing capacity of 476 mA h g
−1
at 0.05 A g
−1
, superior rate properties (236 mA h g
−1
@ 5 A g
−1
), and excellent cycling capability over 2000 cycles with a capacity-retention of 93.4%. Owing to the pre-intercalated Li
+
and Na
+
cations and the resulting bilayer structure, higher pseudocapacitance, faster charge-transfer/ion-diffusion kinetics, and a robust architecture have been achieved in the LVO@NVO cathode, which are responsible for the superior zinc-ion storage performance. Furthermore, the energy storage mechanism based on Zn
2+
and H
+
co-intercalation/extraction has been proved.
Li
+
, Na
+
co-stabilized vanadium oxide nanobelts with a bilayer structure are prepared
via
a quick one-pot eutectic oxidation process. Faster charge-transfer/ion-diffusion kinetics and robust architecture lead to a superior zinc-ion storage performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta05803k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bilayers ; Cathodes ; Cations ; Charge transfer ; Diffusion rate ; Electrode materials ; Energy storage ; Ion charge ; Ion storage ; Oxidation ; Oxidation process ; Rechargeable batteries ; Sodium ; Structural stability ; Vanadium ; Vanadium oxides ; Zinc</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21531-21539</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-e984ae3ac7dabc060196e142a4214c5db0141245b27dc512332abda05b2e13be3</citedby><cites>FETCH-LOGICAL-c281t-e984ae3ac7dabc060196e142a4214c5db0141245b27dc512332abda05b2e13be3</cites><orcidid>0000-0003-0317-3225 ; 0000-0002-1253-3475 ; 0000-0002-5598-476X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Jinjin</creatorcontrib><creatorcontrib>Zhao, Xiangyuan</creatorcontrib><creatorcontrib>Kang, Jinzhao</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Yu, Hong</creatorcontrib><creatorcontrib>Du, Cheng-Feng</creatorcontrib><creatorcontrib>Yan, Qingyu</creatorcontrib><title>Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (LiV
3
O
8
@NaV
3
O
8
, LVO@NVO) have been prepared successfully
via
a quick one-pot eutectic oxidation process. When evaluated as a cathode for ZIBs, the LVO@NVO shows an amazing capacity of 476 mA h g
−1
at 0.05 A g
−1
, superior rate properties (236 mA h g
−1
@ 5 A g
−1
), and excellent cycling capability over 2000 cycles with a capacity-retention of 93.4%. Owing to the pre-intercalated Li
+
and Na
+
cations and the resulting bilayer structure, higher pseudocapacitance, faster charge-transfer/ion-diffusion kinetics, and a robust architecture have been achieved in the LVO@NVO cathode, which are responsible for the superior zinc-ion storage performance. Furthermore, the energy storage mechanism based on Zn
2+
and H
+
co-intercalation/extraction has been proved.
Li
+
, Na
+
co-stabilized vanadium oxide nanobelts with a bilayer structure are prepared
via
a quick one-pot eutectic oxidation process. Faster charge-transfer/ion-diffusion kinetics and robust architecture lead to a superior zinc-ion storage performance.</description><subject>Bilayers</subject><subject>Cathodes</subject><subject>Cations</subject><subject>Charge transfer</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Ion charge</subject><subject>Ion storage</subject><subject>Oxidation</subject><subject>Oxidation process</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Structural stability</subject><subject>Vanadium</subject><subject>Vanadium oxides</subject><subject>Zinc</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAMgCMEEtPYhTtSJG6IQh7t2h6n8RQTXMa5chIPMrZmJCmw_XoCQ8MXW_JnW_4IOebsgjNZXxoRgRUVk297pCdYwbIyr4f7u7qqDskghDlLUTE2rOsecRN7Th-BapeFCMou7AYN_YAWjO2W1H1Zg7SF1ilcxEA_bXylQBMHa_Q0RN_p2HmkM-epci7ENL2xrc6sa1PbeXhBukKf-ktoNR6RgxksAg7-cp8831xPx3fZ5On2fjyaZFpUPGZYVzmgBF0aUJoNGa-HyHMBueC5LoxiPOciL5QojS64kFKAMul7JZBLhbJPTrd7V969dxhiM3edb9PJRpSiqHgSUCbqbEtp70LwOGtW3i7BrxvOmh-nzZWYjn6dPiT4ZAv7oHfcv3P5DVrxdBw</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Wang, Jinjin</creator><creator>Zhao, Xiangyuan</creator><creator>Kang, Jinzhao</creator><creator>Wang, Xiaomei</creator><creator>Yu, Hong</creator><creator>Du, Cheng-Feng</creator><creator>Yan, Qingyu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0317-3225</orcidid><orcidid>https://orcid.org/0000-0002-1253-3475</orcidid><orcidid>https://orcid.org/0000-0002-5598-476X</orcidid></search><sort><creationdate>20221018</creationdate><title>Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance</title><author>Wang, Jinjin ; Zhao, Xiangyuan ; Kang, Jinzhao ; Wang, Xiaomei ; Yu, Hong ; Du, Cheng-Feng ; Yan, Qingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-e984ae3ac7dabc060196e142a4214c5db0141245b27dc512332abda05b2e13be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bilayers</topic><topic>Cathodes</topic><topic>Cations</topic><topic>Charge transfer</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Ion charge</topic><topic>Ion storage</topic><topic>Oxidation</topic><topic>Oxidation process</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Structural stability</topic><topic>Vanadium</topic><topic>Vanadium oxides</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinjin</creatorcontrib><creatorcontrib>Zhao, Xiangyuan</creatorcontrib><creatorcontrib>Kang, Jinzhao</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Yu, Hong</creatorcontrib><creatorcontrib>Du, Cheng-Feng</creatorcontrib><creatorcontrib>Yan, Qingyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinjin</au><au>Zhao, Xiangyuan</au><au>Kang, Jinzhao</au><au>Wang, Xiaomei</au><au>Yu, Hong</au><au>Du, Cheng-Feng</au><au>Yan, Qingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-10-18</date><risdate>2022</risdate><volume>1</volume><issue>4</issue><spage>21531</spage><epage>21539</epage><pages>21531-21539</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (LiV
3
O
8
@NaV
3
O
8
, LVO@NVO) have been prepared successfully
via
a quick one-pot eutectic oxidation process. When evaluated as a cathode for ZIBs, the LVO@NVO shows an amazing capacity of 476 mA h g
−1
at 0.05 A g
−1
, superior rate properties (236 mA h g
−1
@ 5 A g
−1
), and excellent cycling capability over 2000 cycles with a capacity-retention of 93.4%. Owing to the pre-intercalated Li
+
and Na
+
cations and the resulting bilayer structure, higher pseudocapacitance, faster charge-transfer/ion-diffusion kinetics, and a robust architecture have been achieved in the LVO@NVO cathode, which are responsible for the superior zinc-ion storage performance. Furthermore, the energy storage mechanism based on Zn
2+
and H
+
co-intercalation/extraction has been proved.
Li
+
, Na
+
co-stabilized vanadium oxide nanobelts with a bilayer structure are prepared
via
a quick one-pot eutectic oxidation process. Faster charge-transfer/ion-diffusion kinetics and robust architecture lead to a superior zinc-ion storage performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta05803k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0317-3225</orcidid><orcidid>https://orcid.org/0000-0002-1253-3475</orcidid><orcidid>https://orcid.org/0000-0002-5598-476X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21531-21539 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2TA05803K |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bilayers Cathodes Cations Charge transfer Diffusion rate Electrode materials Energy storage Ion charge Ion storage Oxidation Oxidation process Rechargeable batteries Sodium Structural stability Vanadium Vanadium oxides Zinc |
title | Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li,%20Na%20co-stabilized%20vanadium%20oxide%20nanobelts%20with%20a%20bilayer%20structure%20for%20boosted%20zinc-ion%20storage%20performance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Jinjin&rft.date=2022-10-18&rft.volume=1&rft.issue=4&rft.spage=21531&rft.epage=21539&rft.pages=21531-21539&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta05803k&rft_dat=%3Cproquest_cross%3E2725818007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725818007&rft_id=info:pmid/&rfr_iscdi=true |