Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance

Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21531-21539
Hauptverfasser: Wang, Jinjin, Zhao, Xiangyuan, Kang, Jinzhao, Wang, Xiaomei, Yu, Hong, Du, Cheng-Feng, Yan, Qingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21539
container_issue 4
container_start_page 21531
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Wang, Jinjin
Zhao, Xiangyuan
Kang, Jinzhao
Wang, Xiaomei
Yu, Hong
Du, Cheng-Feng
Yan, Qingyu
description Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (LiV 3 O 8 @NaV 3 O 8 , LVO@NVO) have been prepared successfully via a quick one-pot eutectic oxidation process. When evaluated as a cathode for ZIBs, the LVO@NVO shows an amazing capacity of 476 mA h g −1 at 0.05 A g −1 , superior rate properties (236 mA h g −1 @ 5 A g −1 ), and excellent cycling capability over 2000 cycles with a capacity-retention of 93.4%. Owing to the pre-intercalated Li + and Na + cations and the resulting bilayer structure, higher pseudocapacitance, faster charge-transfer/ion-diffusion kinetics, and a robust architecture have been achieved in the LVO@NVO cathode, which are responsible for the superior zinc-ion storage performance. Furthermore, the energy storage mechanism based on Zn 2+ and H + co-intercalation/extraction has been proved. Li + , Na + co-stabilized vanadium oxide nanobelts with a bilayer structure are prepared via a quick one-pot eutectic oxidation process. Faster charge-transfer/ion-diffusion kinetics and robust architecture lead to a superior zinc-ion storage performance.
doi_str_mv 10.1039/d2ta05803k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2TA05803K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725818007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-e984ae3ac7dabc060196e142a4214c5db0141245b27dc512332abda05b2e13be3</originalsourceid><addsrcrecordid>eNpFkEtPwzAMgCMEEtPYhTtSJG6IQh7t2h6n8RQTXMa5chIPMrZmJCmw_XoCQ8MXW_JnW_4IOebsgjNZXxoRgRUVk297pCdYwbIyr4f7u7qqDskghDlLUTE2rOsecRN7Th-BapeFCMou7AYN_YAWjO2W1H1Zg7SF1ilcxEA_bXylQBMHa_Q0RN_p2HmkM-epci7ENL2xrc6sa1PbeXhBukKf-ktoNR6RgxksAg7-cp8831xPx3fZ5On2fjyaZFpUPGZYVzmgBF0aUJoNGa-HyHMBueC5LoxiPOciL5QojS64kFKAMul7JZBLhbJPTrd7V969dxhiM3edb9PJRpSiqHgSUCbqbEtp70LwOGtW3i7BrxvOmh-nzZWYjn6dPiT4ZAv7oHfcv3P5DVrxdBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725818007</pqid></control><display><type>article</type><title>Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Jinjin ; Zhao, Xiangyuan ; Kang, Jinzhao ; Wang, Xiaomei ; Yu, Hong ; Du, Cheng-Feng ; Yan, Qingyu</creator><creatorcontrib>Wang, Jinjin ; Zhao, Xiangyuan ; Kang, Jinzhao ; Wang, Xiaomei ; Yu, Hong ; Du, Cheng-Feng ; Yan, Qingyu</creatorcontrib><description>Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (LiV 3 O 8 @NaV 3 O 8 , LVO@NVO) have been prepared successfully via a quick one-pot eutectic oxidation process. When evaluated as a cathode for ZIBs, the LVO@NVO shows an amazing capacity of 476 mA h g −1 at 0.05 A g −1 , superior rate properties (236 mA h g −1 @ 5 A g −1 ), and excellent cycling capability over 2000 cycles with a capacity-retention of 93.4%. Owing to the pre-intercalated Li + and Na + cations and the resulting bilayer structure, higher pseudocapacitance, faster charge-transfer/ion-diffusion kinetics, and a robust architecture have been achieved in the LVO@NVO cathode, which are responsible for the superior zinc-ion storage performance. Furthermore, the energy storage mechanism based on Zn 2+ and H + co-intercalation/extraction has been proved. Li + , Na + co-stabilized vanadium oxide nanobelts with a bilayer structure are prepared via a quick one-pot eutectic oxidation process. Faster charge-transfer/ion-diffusion kinetics and robust architecture lead to a superior zinc-ion storage performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta05803k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bilayers ; Cathodes ; Cations ; Charge transfer ; Diffusion rate ; Electrode materials ; Energy storage ; Ion charge ; Ion storage ; Oxidation ; Oxidation process ; Rechargeable batteries ; Sodium ; Structural stability ; Vanadium ; Vanadium oxides ; Zinc</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21531-21539</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-e984ae3ac7dabc060196e142a4214c5db0141245b27dc512332abda05b2e13be3</citedby><cites>FETCH-LOGICAL-c281t-e984ae3ac7dabc060196e142a4214c5db0141245b27dc512332abda05b2e13be3</cites><orcidid>0000-0003-0317-3225 ; 0000-0002-1253-3475 ; 0000-0002-5598-476X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Jinjin</creatorcontrib><creatorcontrib>Zhao, Xiangyuan</creatorcontrib><creatorcontrib>Kang, Jinzhao</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Yu, Hong</creatorcontrib><creatorcontrib>Du, Cheng-Feng</creatorcontrib><creatorcontrib>Yan, Qingyu</creatorcontrib><title>Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (LiV 3 O 8 @NaV 3 O 8 , LVO@NVO) have been prepared successfully via a quick one-pot eutectic oxidation process. When evaluated as a cathode for ZIBs, the LVO@NVO shows an amazing capacity of 476 mA h g −1 at 0.05 A g −1 , superior rate properties (236 mA h g −1 @ 5 A g −1 ), and excellent cycling capability over 2000 cycles with a capacity-retention of 93.4%. Owing to the pre-intercalated Li + and Na + cations and the resulting bilayer structure, higher pseudocapacitance, faster charge-transfer/ion-diffusion kinetics, and a robust architecture have been achieved in the LVO@NVO cathode, which are responsible for the superior zinc-ion storage performance. Furthermore, the energy storage mechanism based on Zn 2+ and H + co-intercalation/extraction has been proved. Li + , Na + co-stabilized vanadium oxide nanobelts with a bilayer structure are prepared via a quick one-pot eutectic oxidation process. Faster charge-transfer/ion-diffusion kinetics and robust architecture lead to a superior zinc-ion storage performance.</description><subject>Bilayers</subject><subject>Cathodes</subject><subject>Cations</subject><subject>Charge transfer</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Ion charge</subject><subject>Ion storage</subject><subject>Oxidation</subject><subject>Oxidation process</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Structural stability</subject><subject>Vanadium</subject><subject>Vanadium oxides</subject><subject>Zinc</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAMgCMEEtPYhTtSJG6IQh7t2h6n8RQTXMa5chIPMrZmJCmw_XoCQ8MXW_JnW_4IOebsgjNZXxoRgRUVk297pCdYwbIyr4f7u7qqDskghDlLUTE2rOsecRN7Th-BapeFCMou7AYN_YAWjO2W1H1Zg7SF1ilcxEA_bXylQBMHa_Q0RN_p2HmkM-epci7ENL2xrc6sa1PbeXhBukKf-ktoNR6RgxksAg7-cp8831xPx3fZ5On2fjyaZFpUPGZYVzmgBF0aUJoNGa-HyHMBueC5LoxiPOciL5QojS64kFKAMul7JZBLhbJPTrd7V969dxhiM3edb9PJRpSiqHgSUCbqbEtp70LwOGtW3i7BrxvOmh-nzZWYjn6dPiT4ZAv7oHfcv3P5DVrxdBw</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Wang, Jinjin</creator><creator>Zhao, Xiangyuan</creator><creator>Kang, Jinzhao</creator><creator>Wang, Xiaomei</creator><creator>Yu, Hong</creator><creator>Du, Cheng-Feng</creator><creator>Yan, Qingyu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0317-3225</orcidid><orcidid>https://orcid.org/0000-0002-1253-3475</orcidid><orcidid>https://orcid.org/0000-0002-5598-476X</orcidid></search><sort><creationdate>20221018</creationdate><title>Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance</title><author>Wang, Jinjin ; Zhao, Xiangyuan ; Kang, Jinzhao ; Wang, Xiaomei ; Yu, Hong ; Du, Cheng-Feng ; Yan, Qingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-e984ae3ac7dabc060196e142a4214c5db0141245b27dc512332abda05b2e13be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bilayers</topic><topic>Cathodes</topic><topic>Cations</topic><topic>Charge transfer</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Ion charge</topic><topic>Ion storage</topic><topic>Oxidation</topic><topic>Oxidation process</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Structural stability</topic><topic>Vanadium</topic><topic>Vanadium oxides</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinjin</creatorcontrib><creatorcontrib>Zhao, Xiangyuan</creatorcontrib><creatorcontrib>Kang, Jinzhao</creatorcontrib><creatorcontrib>Wang, Xiaomei</creatorcontrib><creatorcontrib>Yu, Hong</creatorcontrib><creatorcontrib>Du, Cheng-Feng</creatorcontrib><creatorcontrib>Yan, Qingyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinjin</au><au>Zhao, Xiangyuan</au><au>Kang, Jinzhao</au><au>Wang, Xiaomei</au><au>Yu, Hong</au><au>Du, Cheng-Feng</au><au>Yan, Qingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-10-18</date><risdate>2022</risdate><volume>1</volume><issue>4</issue><spage>21531</spage><epage>21539</epage><pages>21531-21539</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Addressing the structural instability and torpid kinetic limitation has been a pressing while challenging issue for vanadium oxide cathode materials to realize their outstanding performance in rechargeable aqueous zinc-ion batteries (ZIBs). Herein, vanadium oxide nanobelts with a bilayer structure (LiV 3 O 8 @NaV 3 O 8 , LVO@NVO) have been prepared successfully via a quick one-pot eutectic oxidation process. When evaluated as a cathode for ZIBs, the LVO@NVO shows an amazing capacity of 476 mA h g −1 at 0.05 A g −1 , superior rate properties (236 mA h g −1 @ 5 A g −1 ), and excellent cycling capability over 2000 cycles with a capacity-retention of 93.4%. Owing to the pre-intercalated Li + and Na + cations and the resulting bilayer structure, higher pseudocapacitance, faster charge-transfer/ion-diffusion kinetics, and a robust architecture have been achieved in the LVO@NVO cathode, which are responsible for the superior zinc-ion storage performance. Furthermore, the energy storage mechanism based on Zn 2+ and H + co-intercalation/extraction has been proved. Li + , Na + co-stabilized vanadium oxide nanobelts with a bilayer structure are prepared via a quick one-pot eutectic oxidation process. Faster charge-transfer/ion-diffusion kinetics and robust architecture lead to a superior zinc-ion storage performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta05803k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0317-3225</orcidid><orcidid>https://orcid.org/0000-0002-1253-3475</orcidid><orcidid>https://orcid.org/0000-0002-5598-476X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21531-21539
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D2TA05803K
source Royal Society Of Chemistry Journals 2008-
subjects Bilayers
Cathodes
Cations
Charge transfer
Diffusion rate
Electrode materials
Energy storage
Ion charge
Ion storage
Oxidation
Oxidation process
Rechargeable batteries
Sodium
Structural stability
Vanadium
Vanadium oxides
Zinc
title Li, Na co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li,%20Na%20co-stabilized%20vanadium%20oxide%20nanobelts%20with%20a%20bilayer%20structure%20for%20boosted%20zinc-ion%20storage%20performance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Jinjin&rft.date=2022-10-18&rft.volume=1&rft.issue=4&rft.spage=21531&rft.epage=21539&rft.pages=21531-21539&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta05803k&rft_dat=%3Cproquest_cross%3E2725818007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725818007&rft_id=info:pmid/&rfr_iscdi=true