Metal-ligand complexation and clustering in mussel-inspired side-chain functionalized supramolecular hydrogels
Byssus threads of mussels have high resistance against abrasion in wave-swept habitats because of their outer cuticle, which is rich in amino acid dopa complexes with Fe 3+ ions. This stems from the transient nature of metal-ligand complexes that creates extra relaxation mechanisms. Inspired by this...
Gespeichert in:
Veröffentlicht in: | Soft matter 2022-09, Vol.18 (36), p.6836-6847 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6847 |
---|---|
container_issue | 36 |
container_start_page | 6836 |
container_title | Soft matter |
container_volume | 18 |
creator | Jangizehi, Amir Ahmadi, Mostafa Pschierer, Sarah Nicolella, Paola Li, Hailong Amann-Winkel, Katrin Seiffert, Sebastian |
description | Byssus threads of mussels have high resistance against abrasion in wave-swept habitats because of their outer cuticle, which is rich in amino acid dopa complexes with Fe
3+
ions. This stems from the transient nature of metal-ligand complexes that creates extra relaxation mechanisms. Inspired by this concept, in this work, supramolecular hydrogels based on poly(acrylic acid) functionalized with nitrocatechol groups are synthesized. Polymer chains are physically crosslinked
via
nitrocatechol-Fe
3+
complexes. The hydrogels have different polymer volume fractions as well as different nitrocatechol : Fe
3+
molar ratios. The strength of the supramolecular crosslinks strongly depends on the pH of the medium. The dynamics of these hydrogels are studied by stress relaxation experiments followed by calculation of the relaxation time spectrum. Generally, samples have three relaxation modes, including dissociation of distinct metal-ligand complexes, reptation of sticky polymer chains, and disengagement of network segments from supramolecular aggregates and clusters. Such clusters hinder the terminal relaxation and potentially increase the stability of supramolecular hydrogels.
Mussel-inspired side-chain functionalized supramolecular hydrogels based on nitrocatechol-Fe
3+
physical complexations reveal three relaxation modes whose lifetime varies six orders of magnitudes from 0.1 s to 9.8 × 10
4
s. |
doi_str_mv | 10.1039/d2sm00666a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2SM00666A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716541998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2908cb2923699f3e00f09a82e7b5863ea5fa6b6a8960cca9c107a9369b7a823c3</originalsourceid><addsrcrecordid>eNpd0d1LwzAQAPAiCs7pi-9CwRcRqvno0uRxzE_Y8EEF38o1TbeMNK1JA86_3naTCT7lyP3u4O6i6ByjG4youC2JrxFijMFBNMJZmiaMp_xwH9OP4-jE-zVClKeYjSK7UB2YxOgl2DKWTd0a9QWdbmy8_TDBd8ppu4y1jevgvTKJtr7VTpWx16VK5Ar6VBWsHKrA6O8hE1oHdWOUDAZcvNqUrlkq40-jowqMV2e_7zh6f7h_mz0l85fH59l0nkg6QV1CBOKyIIJQJkRFFUIVEsCJyooJZ1TBpAJWMOCCISlBSIwyED0usl5RScfR1a5v65rPoHyX19pLZQxY1QSfkwxxwhAhvKeX_-i6Ca4fZFCYTVIsxKCud0q6xnunqrx1uga3yTHKh9Xnd-R1sV39tMcXO-y83Lu_09AftPeCTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716541998</pqid></control><display><type>article</type><title>Metal-ligand complexation and clustering in mussel-inspired side-chain functionalized supramolecular hydrogels</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Jangizehi, Amir ; Ahmadi, Mostafa ; Pschierer, Sarah ; Nicolella, Paola ; Li, Hailong ; Amann-Winkel, Katrin ; Seiffert, Sebastian</creator><creatorcontrib>Jangizehi, Amir ; Ahmadi, Mostafa ; Pschierer, Sarah ; Nicolella, Paola ; Li, Hailong ; Amann-Winkel, Katrin ; Seiffert, Sebastian</creatorcontrib><description>Byssus threads of mussels have high resistance against abrasion in wave-swept habitats because of their outer cuticle, which is rich in amino acid dopa complexes with Fe
3+
ions. This stems from the transient nature of metal-ligand complexes that creates extra relaxation mechanisms. Inspired by this concept, in this work, supramolecular hydrogels based on poly(acrylic acid) functionalized with nitrocatechol groups are synthesized. Polymer chains are physically crosslinked
via
nitrocatechol-Fe
3+
complexes. The hydrogels have different polymer volume fractions as well as different nitrocatechol : Fe
3+
molar ratios. The strength of the supramolecular crosslinks strongly depends on the pH of the medium. The dynamics of these hydrogels are studied by stress relaxation experiments followed by calculation of the relaxation time spectrum. Generally, samples have three relaxation modes, including dissociation of distinct metal-ligand complexes, reptation of sticky polymer chains, and disengagement of network segments from supramolecular aggregates and clusters. Such clusters hinder the terminal relaxation and potentially increase the stability of supramolecular hydrogels.
Mussel-inspired side-chain functionalized supramolecular hydrogels based on nitrocatechol-Fe
3+
physical complexations reveal three relaxation modes whose lifetime varies six orders of magnitudes from 0.1 s to 9.8 × 10
4
s.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d2sm00666a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Abrasion ; Abrasion resistance ; Acrylic acid ; Amino acids ; Chain entanglement ; Chains (polymeric) ; Clustering ; Crosslinking ; Ferric ions ; High resistance ; Hydrogels ; Iron ; Ligands ; Mollusks ; Mussels ; Polyacrylic acid ; Polymers ; Relaxation time ; Reptation ; Stress relaxation ; Wave resistance</subject><ispartof>Soft matter, 2022-09, Vol.18 (36), p.6836-6847</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2908cb2923699f3e00f09a82e7b5863ea5fa6b6a8960cca9c107a9369b7a823c3</citedby><cites>FETCH-LOGICAL-c350t-2908cb2923699f3e00f09a82e7b5863ea5fa6b6a8960cca9c107a9369b7a823c3</cites><orcidid>0000-0001-6871-4251 ; 0000-0002-5152-1207 ; 0000-0001-6652-4067 ; 0000-0002-7319-7807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Jangizehi, Amir</creatorcontrib><creatorcontrib>Ahmadi, Mostafa</creatorcontrib><creatorcontrib>Pschierer, Sarah</creatorcontrib><creatorcontrib>Nicolella, Paola</creatorcontrib><creatorcontrib>Li, Hailong</creatorcontrib><creatorcontrib>Amann-Winkel, Katrin</creatorcontrib><creatorcontrib>Seiffert, Sebastian</creatorcontrib><title>Metal-ligand complexation and clustering in mussel-inspired side-chain functionalized supramolecular hydrogels</title><title>Soft matter</title><description>Byssus threads of mussels have high resistance against abrasion in wave-swept habitats because of their outer cuticle, which is rich in amino acid dopa complexes with Fe
3+
ions. This stems from the transient nature of metal-ligand complexes that creates extra relaxation mechanisms. Inspired by this concept, in this work, supramolecular hydrogels based on poly(acrylic acid) functionalized with nitrocatechol groups are synthesized. Polymer chains are physically crosslinked
via
nitrocatechol-Fe
3+
complexes. The hydrogels have different polymer volume fractions as well as different nitrocatechol : Fe
3+
molar ratios. The strength of the supramolecular crosslinks strongly depends on the pH of the medium. The dynamics of these hydrogels are studied by stress relaxation experiments followed by calculation of the relaxation time spectrum. Generally, samples have three relaxation modes, including dissociation of distinct metal-ligand complexes, reptation of sticky polymer chains, and disengagement of network segments from supramolecular aggregates and clusters. Such clusters hinder the terminal relaxation and potentially increase the stability of supramolecular hydrogels.
Mussel-inspired side-chain functionalized supramolecular hydrogels based on nitrocatechol-Fe
3+
physical complexations reveal three relaxation modes whose lifetime varies six orders of magnitudes from 0.1 s to 9.8 × 10
4
s.</description><subject>Abrasion</subject><subject>Abrasion resistance</subject><subject>Acrylic acid</subject><subject>Amino acids</subject><subject>Chain entanglement</subject><subject>Chains (polymeric)</subject><subject>Clustering</subject><subject>Crosslinking</subject><subject>Ferric ions</subject><subject>High resistance</subject><subject>Hydrogels</subject><subject>Iron</subject><subject>Ligands</subject><subject>Mollusks</subject><subject>Mussels</subject><subject>Polyacrylic acid</subject><subject>Polymers</subject><subject>Relaxation time</subject><subject>Reptation</subject><subject>Stress relaxation</subject><subject>Wave resistance</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0d1LwzAQAPAiCs7pi-9CwRcRqvno0uRxzE_Y8EEF38o1TbeMNK1JA86_3naTCT7lyP3u4O6i6ByjG4youC2JrxFijMFBNMJZmiaMp_xwH9OP4-jE-zVClKeYjSK7UB2YxOgl2DKWTd0a9QWdbmy8_TDBd8ppu4y1jevgvTKJtr7VTpWx16VK5Ar6VBWsHKrA6O8hE1oHdWOUDAZcvNqUrlkq40-jowqMV2e_7zh6f7h_mz0l85fH59l0nkg6QV1CBOKyIIJQJkRFFUIVEsCJyooJZ1TBpAJWMOCCISlBSIwyED0usl5RScfR1a5v65rPoHyX19pLZQxY1QSfkwxxwhAhvKeX_-i6Ca4fZFCYTVIsxKCud0q6xnunqrx1uga3yTHKh9Xnd-R1sV39tMcXO-y83Lu_09AftPeCTw</recordid><startdate>20220921</startdate><enddate>20220921</enddate><creator>Jangizehi, Amir</creator><creator>Ahmadi, Mostafa</creator><creator>Pschierer, Sarah</creator><creator>Nicolella, Paola</creator><creator>Li, Hailong</creator><creator>Amann-Winkel, Katrin</creator><creator>Seiffert, Sebastian</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6871-4251</orcidid><orcidid>https://orcid.org/0000-0002-5152-1207</orcidid><orcidid>https://orcid.org/0000-0001-6652-4067</orcidid><orcidid>https://orcid.org/0000-0002-7319-7807</orcidid></search><sort><creationdate>20220921</creationdate><title>Metal-ligand complexation and clustering in mussel-inspired side-chain functionalized supramolecular hydrogels</title><author>Jangizehi, Amir ; Ahmadi, Mostafa ; Pschierer, Sarah ; Nicolella, Paola ; Li, Hailong ; Amann-Winkel, Katrin ; Seiffert, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2908cb2923699f3e00f09a82e7b5863ea5fa6b6a8960cca9c107a9369b7a823c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abrasion</topic><topic>Abrasion resistance</topic><topic>Acrylic acid</topic><topic>Amino acids</topic><topic>Chain entanglement</topic><topic>Chains (polymeric)</topic><topic>Clustering</topic><topic>Crosslinking</topic><topic>Ferric ions</topic><topic>High resistance</topic><topic>Hydrogels</topic><topic>Iron</topic><topic>Ligands</topic><topic>Mollusks</topic><topic>Mussels</topic><topic>Polyacrylic acid</topic><topic>Polymers</topic><topic>Relaxation time</topic><topic>Reptation</topic><topic>Stress relaxation</topic><topic>Wave resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jangizehi, Amir</creatorcontrib><creatorcontrib>Ahmadi, Mostafa</creatorcontrib><creatorcontrib>Pschierer, Sarah</creatorcontrib><creatorcontrib>Nicolella, Paola</creatorcontrib><creatorcontrib>Li, Hailong</creatorcontrib><creatorcontrib>Amann-Winkel, Katrin</creatorcontrib><creatorcontrib>Seiffert, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jangizehi, Amir</au><au>Ahmadi, Mostafa</au><au>Pschierer, Sarah</au><au>Nicolella, Paola</au><au>Li, Hailong</au><au>Amann-Winkel, Katrin</au><au>Seiffert, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-ligand complexation and clustering in mussel-inspired side-chain functionalized supramolecular hydrogels</atitle><jtitle>Soft matter</jtitle><date>2022-09-21</date><risdate>2022</risdate><volume>18</volume><issue>36</issue><spage>6836</spage><epage>6847</epage><pages>6836-6847</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Byssus threads of mussels have high resistance against abrasion in wave-swept habitats because of their outer cuticle, which is rich in amino acid dopa complexes with Fe
3+
ions. This stems from the transient nature of metal-ligand complexes that creates extra relaxation mechanisms. Inspired by this concept, in this work, supramolecular hydrogels based on poly(acrylic acid) functionalized with nitrocatechol groups are synthesized. Polymer chains are physically crosslinked
via
nitrocatechol-Fe
3+
complexes. The hydrogels have different polymer volume fractions as well as different nitrocatechol : Fe
3+
molar ratios. The strength of the supramolecular crosslinks strongly depends on the pH of the medium. The dynamics of these hydrogels are studied by stress relaxation experiments followed by calculation of the relaxation time spectrum. Generally, samples have three relaxation modes, including dissociation of distinct metal-ligand complexes, reptation of sticky polymer chains, and disengagement of network segments from supramolecular aggregates and clusters. Such clusters hinder the terminal relaxation and potentially increase the stability of supramolecular hydrogels.
Mussel-inspired side-chain functionalized supramolecular hydrogels based on nitrocatechol-Fe
3+
physical complexations reveal three relaxation modes whose lifetime varies six orders of magnitudes from 0.1 s to 9.8 × 10
4
s.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2sm00666a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6871-4251</orcidid><orcidid>https://orcid.org/0000-0002-5152-1207</orcidid><orcidid>https://orcid.org/0000-0001-6652-4067</orcidid><orcidid>https://orcid.org/0000-0002-7319-7807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2022-09, Vol.18 (36), p.6836-6847 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2SM00666A |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Abrasion Abrasion resistance Acrylic acid Amino acids Chain entanglement Chains (polymeric) Clustering Crosslinking Ferric ions High resistance Hydrogels Iron Ligands Mollusks Mussels Polyacrylic acid Polymers Relaxation time Reptation Stress relaxation Wave resistance |
title | Metal-ligand complexation and clustering in mussel-inspired side-chain functionalized supramolecular hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-ligand%20complexation%20and%20clustering%20in%20mussel-inspired%20side-chain%20functionalized%20supramolecular%20hydrogels&rft.jtitle=Soft%20matter&rft.au=Jangizehi,%20Amir&rft.date=2022-09-21&rft.volume=18&rft.issue=36&rft.spage=6836&rft.epage=6847&rft.pages=6836-6847&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d2sm00666a&rft_dat=%3Cproquest_cross%3E2716541998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716541998&rft_id=info:pmid/&rfr_iscdi=true |