Bond strength regime dictates stress relaxation behavior

Reconfigurable polymer networks are gaining interest for their potential applications as self-healing, recyclable, and stimuli-responsive smart materials. Relating the bond strength of dynamic interactions to material properties including stress relaxation time and modulus is crucial for smart mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2022-07, Vol.18 (26), p.4937-4943
Hauptverfasser: Sacligil, Ipek, Barney, Christopher W, Crosby, Alfred J, Tew, Gregory N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4943
container_issue 26
container_start_page 4937
container_title Soft matter
container_volume 18
creator Sacligil, Ipek
Barney, Christopher W
Crosby, Alfred J
Tew, Gregory N
description Reconfigurable polymer networks are gaining interest for their potential applications as self-healing, recyclable, and stimuli-responsive smart materials. Relating the bond strength of dynamic interactions to material properties including stress relaxation time and modulus is crucial for smart material design. In this work, in situ crosslinked transition metal-terpyridine reconfigurable networks were utilized to modulate the characteristic network stress relaxation time, τ R . The use of stress relaxation experiments rather than oscillatory frequency sweeps allowed for the measurement of network bond dynamics across a wider dynamic range than has been previously reported. The stress relaxation time was shown to be tunable by metal center, counterion, and crosslink density. Remarkably, the network crosslinked with covalent-like ruthenium chloride-terpyridine interaction, while having a longer τ R , was qualitatively similar to the other metal-ligand networks. Furthermore, the relaxation time was independent of crosslink density in strongly bonded networks, allowing for independent tunability of modulus and τ R . In contrast, increasing crosslink density reduced τ R in networks crosslinked with weaker interactions. This work utilizes in situ crosslinked dynamic networks to show differences in stress-relaxation behavior depending on the bond strength of the metal-ligand crosslinker used.
doi_str_mv 10.1039/d2sm00499b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2SM00499B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684919756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-91b2761038a6aebb542e9aa8622e1fe8859436167e29da0fc648e8e0a18a89cc3</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AgCs7pi-9CwRcRqkmapZdHN3_CxAcVfCtpet062mYmmeh_b9xkgk933H04ji8hx4xeMJqpy4r7jlKhVLlDBiwXIpUgYHfbZ2_75MD7BaUZCCYHBMa2rxIfHPazME8czpoOk6oxQQf064X3cdzqTx0a2yclzvVHY90h2at16_Hotw7J6-3Ny-Q-nT7dPUyupqnhQoRUsZLnMv4GWmosy5HgqLQGyTmyGgFGSmSSyRy5qjStjRSAgFQz0KCMyYbkbHN36ez7Cn0ousYbbFvdo135gstc5ZQyDpGe_qMLu3J9_C4qEIqpfCSjOt8o46z3Duti6ZpOu6-C0eInxOKaPz-uQxxHfLLBzput-ws5-wbwpm1l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684919756</pqid></control><display><type>article</type><title>Bond strength regime dictates stress relaxation behavior</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sacligil, Ipek ; Barney, Christopher W ; Crosby, Alfred J ; Tew, Gregory N</creator><creatorcontrib>Sacligil, Ipek ; Barney, Christopher W ; Crosby, Alfred J ; Tew, Gregory N</creatorcontrib><description>Reconfigurable polymer networks are gaining interest for their potential applications as self-healing, recyclable, and stimuli-responsive smart materials. Relating the bond strength of dynamic interactions to material properties including stress relaxation time and modulus is crucial for smart material design. In this work, in situ crosslinked transition metal-terpyridine reconfigurable networks were utilized to modulate the characteristic network stress relaxation time, τ R . The use of stress relaxation experiments rather than oscillatory frequency sweeps allowed for the measurement of network bond dynamics across a wider dynamic range than has been previously reported. The stress relaxation time was shown to be tunable by metal center, counterion, and crosslink density. Remarkably, the network crosslinked with covalent-like ruthenium chloride-terpyridine interaction, while having a longer τ R , was qualitatively similar to the other metal-ligand networks. Furthermore, the relaxation time was independent of crosslink density in strongly bonded networks, allowing for independent tunability of modulus and τ R . In contrast, increasing crosslink density reduced τ R in networks crosslinked with weaker interactions. This work utilizes in situ crosslinked dynamic networks to show differences in stress-relaxation behavior depending on the bond strength of the metal-ligand crosslinker used.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d2sm00499b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bonding strength ; Crosslinking ; Density ; Material properties ; Networks ; Polymers ; Reconfiguration ; Relaxation time ; Ruthenium ; Ruthenium trichloride ; Smart materials ; Stress ; Stress relaxation ; Transition metals</subject><ispartof>Soft matter, 2022-07, Vol.18 (26), p.4937-4943</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-91b2761038a6aebb542e9aa8622e1fe8859436167e29da0fc648e8e0a18a89cc3</citedby><cites>FETCH-LOGICAL-c244t-91b2761038a6aebb542e9aa8622e1fe8859436167e29da0fc648e8e0a18a89cc3</cites><orcidid>0000-0003-3277-7925 ; 0000-0002-1854-9523 ; 0000-0001-5222-7125 ; 0000-0001-8850-8869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sacligil, Ipek</creatorcontrib><creatorcontrib>Barney, Christopher W</creatorcontrib><creatorcontrib>Crosby, Alfred J</creatorcontrib><creatorcontrib>Tew, Gregory N</creatorcontrib><title>Bond strength regime dictates stress relaxation behavior</title><title>Soft matter</title><description>Reconfigurable polymer networks are gaining interest for their potential applications as self-healing, recyclable, and stimuli-responsive smart materials. Relating the bond strength of dynamic interactions to material properties including stress relaxation time and modulus is crucial for smart material design. In this work, in situ crosslinked transition metal-terpyridine reconfigurable networks were utilized to modulate the characteristic network stress relaxation time, τ R . The use of stress relaxation experiments rather than oscillatory frequency sweeps allowed for the measurement of network bond dynamics across a wider dynamic range than has been previously reported. The stress relaxation time was shown to be tunable by metal center, counterion, and crosslink density. Remarkably, the network crosslinked with covalent-like ruthenium chloride-terpyridine interaction, while having a longer τ R , was qualitatively similar to the other metal-ligand networks. Furthermore, the relaxation time was independent of crosslink density in strongly bonded networks, allowing for independent tunability of modulus and τ R . In contrast, increasing crosslink density reduced τ R in networks crosslinked with weaker interactions. This work utilizes in situ crosslinked dynamic networks to show differences in stress-relaxation behavior depending on the bond strength of the metal-ligand crosslinker used.</description><subject>Bonding strength</subject><subject>Crosslinking</subject><subject>Density</subject><subject>Material properties</subject><subject>Networks</subject><subject>Polymers</subject><subject>Reconfiguration</subject><subject>Relaxation time</subject><subject>Ruthenium</subject><subject>Ruthenium trichloride</subject><subject>Smart materials</subject><subject>Stress</subject><subject>Stress relaxation</subject><subject>Transition metals</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0N9LwzAQB_AgCs7pi-9CwRcRqkmapZdHN3_CxAcVfCtpet062mYmmeh_b9xkgk933H04ji8hx4xeMJqpy4r7jlKhVLlDBiwXIpUgYHfbZ2_75MD7BaUZCCYHBMa2rxIfHPazME8czpoOk6oxQQf064X3cdzqTx0a2yclzvVHY90h2at16_Hotw7J6-3Ny-Q-nT7dPUyupqnhQoRUsZLnMv4GWmosy5HgqLQGyTmyGgFGSmSSyRy5qjStjRSAgFQz0KCMyYbkbHN36ez7Cn0ousYbbFvdo135gstc5ZQyDpGe_qMLu3J9_C4qEIqpfCSjOt8o46z3Duti6ZpOu6-C0eInxOKaPz-uQxxHfLLBzput-ws5-wbwpm1l</recordid><startdate>20220706</startdate><enddate>20220706</enddate><creator>Sacligil, Ipek</creator><creator>Barney, Christopher W</creator><creator>Crosby, Alfred J</creator><creator>Tew, Gregory N</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3277-7925</orcidid><orcidid>https://orcid.org/0000-0002-1854-9523</orcidid><orcidid>https://orcid.org/0000-0001-5222-7125</orcidid><orcidid>https://orcid.org/0000-0001-8850-8869</orcidid></search><sort><creationdate>20220706</creationdate><title>Bond strength regime dictates stress relaxation behavior</title><author>Sacligil, Ipek ; Barney, Christopher W ; Crosby, Alfred J ; Tew, Gregory N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-91b2761038a6aebb542e9aa8622e1fe8859436167e29da0fc648e8e0a18a89cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding strength</topic><topic>Crosslinking</topic><topic>Density</topic><topic>Material properties</topic><topic>Networks</topic><topic>Polymers</topic><topic>Reconfiguration</topic><topic>Relaxation time</topic><topic>Ruthenium</topic><topic>Ruthenium trichloride</topic><topic>Smart materials</topic><topic>Stress</topic><topic>Stress relaxation</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sacligil, Ipek</creatorcontrib><creatorcontrib>Barney, Christopher W</creatorcontrib><creatorcontrib>Crosby, Alfred J</creatorcontrib><creatorcontrib>Tew, Gregory N</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sacligil, Ipek</au><au>Barney, Christopher W</au><au>Crosby, Alfred J</au><au>Tew, Gregory N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bond strength regime dictates stress relaxation behavior</atitle><jtitle>Soft matter</jtitle><date>2022-07-06</date><risdate>2022</risdate><volume>18</volume><issue>26</issue><spage>4937</spage><epage>4943</epage><pages>4937-4943</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Reconfigurable polymer networks are gaining interest for their potential applications as self-healing, recyclable, and stimuli-responsive smart materials. Relating the bond strength of dynamic interactions to material properties including stress relaxation time and modulus is crucial for smart material design. In this work, in situ crosslinked transition metal-terpyridine reconfigurable networks were utilized to modulate the characteristic network stress relaxation time, τ R . The use of stress relaxation experiments rather than oscillatory frequency sweeps allowed for the measurement of network bond dynamics across a wider dynamic range than has been previously reported. The stress relaxation time was shown to be tunable by metal center, counterion, and crosslink density. Remarkably, the network crosslinked with covalent-like ruthenium chloride-terpyridine interaction, while having a longer τ R , was qualitatively similar to the other metal-ligand networks. Furthermore, the relaxation time was independent of crosslink density in strongly bonded networks, allowing for independent tunability of modulus and τ R . In contrast, increasing crosslink density reduced τ R in networks crosslinked with weaker interactions. This work utilizes in situ crosslinked dynamic networks to show differences in stress-relaxation behavior depending on the bond strength of the metal-ligand crosslinker used.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2sm00499b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3277-7925</orcidid><orcidid>https://orcid.org/0000-0002-1854-9523</orcidid><orcidid>https://orcid.org/0000-0001-5222-7125</orcidid><orcidid>https://orcid.org/0000-0001-8850-8869</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2022-07, Vol.18 (26), p.4937-4943
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_D2SM00499B
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bonding strength
Crosslinking
Density
Material properties
Networks
Polymers
Reconfiguration
Relaxation time
Ruthenium
Ruthenium trichloride
Smart materials
Stress
Stress relaxation
Transition metals
title Bond strength regime dictates stress relaxation behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bond%20strength%20regime%20dictates%20stress%20relaxation%20behavior&rft.jtitle=Soft%20matter&rft.au=Sacligil,%20Ipek&rft.date=2022-07-06&rft.volume=18&rft.issue=26&rft.spage=4937&rft.epage=4943&rft.pages=4937-4943&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d2sm00499b&rft_dat=%3Cproquest_cross%3E2684919756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684919756&rft_id=info:pmid/&rfr_iscdi=true