Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy

Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2022-11, Vol.13 (46), p.13829-13835
Hauptverfasser: Wang, Ping-Shi, Ma, Hao, Yan, Sen, Lu, Xinyu, Tang, Hui, Xi, Xiao-Han, Peng, Xiao-Hui, Huang, Yajun, Bao, Yi-Fan, Cao, Mao-Feng, Wang, Huimeng, Huang, Jinglin, Liu, Guokun, Wang, Xiang, Ren, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13835
container_issue 46
container_start_page 13829
container_title Chemical science (Cambridge)
container_volume 13
creator Wang, Ping-Shi
Ma, Hao
Yan, Sen
Lu, Xinyu
Tang, Hui
Xi, Xiao-Han
Peng, Xiao-Hui
Huang, Yajun
Bao, Yi-Fan
Cao, Mao-Feng
Wang, Huimeng
Huang, Jinglin
Liu, Guokun
Wang, Xiang
Ren, Bin
description Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which makes it a promising tool for proteomics. It is still challenging to obtain SERS spectra of proteins in the native state and evaluate the native degree. Here, we constructed 3D physiological hotspots for a label-free dynamic SERS characterization of a native protein with iodide-modified 140 nm Au nanoparticles. We further introduced the correlation coefficient to quantitatively evaluate the variation of the native degree, whose quantitative nature allows us to explicitly investigate the Hofmeister effect on the protein structure. We realized the classification of a protein of SARS-CoV-2 variants in 15 min, which has not been achieved before. This study offers an effective tool for tracking the dynamic structure of proteins and biomedical research. Iodide modified Au nanoparticles combined with correlation coefficient allows label-free SERS characterization of proteins in native state and analysis of Hofmeister effect on protein structure, further enabling identification of protein variants.
doi_str_mv 10.1039/d2sc04775f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2SC04775F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757161329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-43e88130a4ed6b5defd6e8d1610e523486588022f4a29b892e043d2d0f59a09d3</originalsourceid><addsrcrecordid>eNpdkstr3DAQxkVoaMIml95TDL2UgFM9betSKNu8IFDo4yxkaZRV8EquZC9s_vqq2WT7EAINmp8-vpkRQm8IviCYyQ-WZoN52wp3gI4p5qRuBJOv9jHFR-g05wdcFmNE0PY1OmKN4Lxl7BhtljElGPTkY6hMBOe88RCm2voEZgJbDbqHoXYJoDIrnXS5TP5x9yC6KpRoA9WY4gQ-5KrfVnlOThuoIax0MEXiq17rUOWxCKaYTRy3J-jQ6SHD6fO5QD-uLr8vb-q7L9e3y093teGSTzVn0HWEYc3BNr2w4GwDnSUNwSAo410jug5T6rimsu8kBcyZpRY7ITWWli3Qx53uOPdrsKZUlvSgxuTXOm1V1F79mwl-pe7jRsm2dLfsBXr_LJDizxnypNY-GxgGHSDOWdFWtMUOo7Kg7_5DH-KcQimvUJzQllFKCnW-o0xpRU7g9mYIVr8nqj7Tb8uniV4V-O3f9vfoy_wKcLYDUjb77J8vwX4B5fan0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741273221</pqid></control><display><type>article</type><title>Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wang, Ping-Shi ; Ma, Hao ; Yan, Sen ; Lu, Xinyu ; Tang, Hui ; Xi, Xiao-Han ; Peng, Xiao-Hui ; Huang, Yajun ; Bao, Yi-Fan ; Cao, Mao-Feng ; Wang, Huimeng ; Huang, Jinglin ; Liu, Guokun ; Wang, Xiang ; Ren, Bin</creator><creatorcontrib>Wang, Ping-Shi ; Ma, Hao ; Yan, Sen ; Lu, Xinyu ; Tang, Hui ; Xi, Xiao-Han ; Peng, Xiao-Hui ; Huang, Yajun ; Bao, Yi-Fan ; Cao, Mao-Feng ; Wang, Huimeng ; Huang, Jinglin ; Liu, Guokun ; Wang, Xiang ; Ren, Bin</creatorcontrib><description>Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which makes it a promising tool for proteomics. It is still challenging to obtain SERS spectra of proteins in the native state and evaluate the native degree. Here, we constructed 3D physiological hotspots for a label-free dynamic SERS characterization of a native protein with iodide-modified 140 nm Au nanoparticles. We further introduced the correlation coefficient to quantitatively evaluate the variation of the native degree, whose quantitative nature allows us to explicitly investigate the Hofmeister effect on the protein structure. We realized the classification of a protein of SARS-CoV-2 variants in 15 min, which has not been achieved before. This study offers an effective tool for tracking the dynamic structure of proteins and biomedical research. Iodide modified Au nanoparticles combined with correlation coefficient allows label-free SERS characterization of proteins in native state and analysis of Hofmeister effect on protein structure, further enabling identification of protein variants.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d2sc04775f</identifier><identifier>PMID: 36544733</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Coefficient of variation ; Correlation coefficients ; Evaluation ; Gold ; Nanoparticles ; Proteins ; Proteomics ; Raman spectroscopy ; Severe acute respiratory syndrome coronavirus 2 ; Spectrum analysis</subject><ispartof>Chemical science (Cambridge), 2022-11, Vol.13 (46), p.13829-13835</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-43e88130a4ed6b5defd6e8d1610e523486588022f4a29b892e043d2d0f59a09d3</citedby><cites>FETCH-LOGICAL-c494t-43e88130a4ed6b5defd6e8d1610e523486588022f4a29b892e043d2d0f59a09d3</cites><orcidid>0000-0002-9821-5864 ; 0000-0001-6316-5898 ; 0000-0001-8341-4003 ; 0000-0003-2501-7178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710310/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710310/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36544733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ping-Shi</creatorcontrib><creatorcontrib>Ma, Hao</creatorcontrib><creatorcontrib>Yan, Sen</creatorcontrib><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Tang, Hui</creatorcontrib><creatorcontrib>Xi, Xiao-Han</creatorcontrib><creatorcontrib>Peng, Xiao-Hui</creatorcontrib><creatorcontrib>Huang, Yajun</creatorcontrib><creatorcontrib>Bao, Yi-Fan</creatorcontrib><creatorcontrib>Cao, Mao-Feng</creatorcontrib><creatorcontrib>Wang, Huimeng</creatorcontrib><creatorcontrib>Huang, Jinglin</creatorcontrib><creatorcontrib>Liu, Guokun</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Ren, Bin</creatorcontrib><title>Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which makes it a promising tool for proteomics. It is still challenging to obtain SERS spectra of proteins in the native state and evaluate the native degree. Here, we constructed 3D physiological hotspots for a label-free dynamic SERS characterization of a native protein with iodide-modified 140 nm Au nanoparticles. We further introduced the correlation coefficient to quantitatively evaluate the variation of the native degree, whose quantitative nature allows us to explicitly investigate the Hofmeister effect on the protein structure. We realized the classification of a protein of SARS-CoV-2 variants in 15 min, which has not been achieved before. This study offers an effective tool for tracking the dynamic structure of proteins and biomedical research. Iodide modified Au nanoparticles combined with correlation coefficient allows label-free SERS characterization of proteins in native state and analysis of Hofmeister effect on protein structure, further enabling identification of protein variants.</description><subject>Chemistry</subject><subject>Coefficient of variation</subject><subject>Correlation coefficients</subject><subject>Evaluation</subject><subject>Gold</subject><subject>Nanoparticles</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Raman spectroscopy</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spectrum analysis</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkstr3DAQxkVoaMIml95TDL2UgFM9betSKNu8IFDo4yxkaZRV8EquZC9s_vqq2WT7EAINmp8-vpkRQm8IviCYyQ-WZoN52wp3gI4p5qRuBJOv9jHFR-g05wdcFmNE0PY1OmKN4Lxl7BhtljElGPTkY6hMBOe88RCm2voEZgJbDbqHoXYJoDIrnXS5TP5x9yC6KpRoA9WY4gQ-5KrfVnlOThuoIax0MEXiq17rUOWxCKaYTRy3J-jQ6SHD6fO5QD-uLr8vb-q7L9e3y093teGSTzVn0HWEYc3BNr2w4GwDnSUNwSAo410jug5T6rimsu8kBcyZpRY7ITWWli3Qx53uOPdrsKZUlvSgxuTXOm1V1F79mwl-pe7jRsm2dLfsBXr_LJDizxnypNY-GxgGHSDOWdFWtMUOo7Kg7_5DH-KcQimvUJzQllFKCnW-o0xpRU7g9mYIVr8nqj7Tb8uniV4V-O3f9vfoy_wKcLYDUjb77J8vwX4B5fan0A</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Wang, Ping-Shi</creator><creator>Ma, Hao</creator><creator>Yan, Sen</creator><creator>Lu, Xinyu</creator><creator>Tang, Hui</creator><creator>Xi, Xiao-Han</creator><creator>Peng, Xiao-Hui</creator><creator>Huang, Yajun</creator><creator>Bao, Yi-Fan</creator><creator>Cao, Mao-Feng</creator><creator>Wang, Huimeng</creator><creator>Huang, Jinglin</creator><creator>Liu, Guokun</creator><creator>Wang, Xiang</creator><creator>Ren, Bin</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9821-5864</orcidid><orcidid>https://orcid.org/0000-0001-6316-5898</orcidid><orcidid>https://orcid.org/0000-0001-8341-4003</orcidid><orcidid>https://orcid.org/0000-0003-2501-7178</orcidid></search><sort><creationdate>20221130</creationdate><title>Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy</title><author>Wang, Ping-Shi ; Ma, Hao ; Yan, Sen ; Lu, Xinyu ; Tang, Hui ; Xi, Xiao-Han ; Peng, Xiao-Hui ; Huang, Yajun ; Bao, Yi-Fan ; Cao, Mao-Feng ; Wang, Huimeng ; Huang, Jinglin ; Liu, Guokun ; Wang, Xiang ; Ren, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-43e88130a4ed6b5defd6e8d1610e523486588022f4a29b892e043d2d0f59a09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Coefficient of variation</topic><topic>Correlation coefficients</topic><topic>Evaluation</topic><topic>Gold</topic><topic>Nanoparticles</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Raman spectroscopy</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ping-Shi</creatorcontrib><creatorcontrib>Ma, Hao</creatorcontrib><creatorcontrib>Yan, Sen</creatorcontrib><creatorcontrib>Lu, Xinyu</creatorcontrib><creatorcontrib>Tang, Hui</creatorcontrib><creatorcontrib>Xi, Xiao-Han</creatorcontrib><creatorcontrib>Peng, Xiao-Hui</creatorcontrib><creatorcontrib>Huang, Yajun</creatorcontrib><creatorcontrib>Bao, Yi-Fan</creatorcontrib><creatorcontrib>Cao, Mao-Feng</creatorcontrib><creatorcontrib>Wang, Huimeng</creatorcontrib><creatorcontrib>Huang, Jinglin</creatorcontrib><creatorcontrib>Liu, Guokun</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Ren, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ping-Shi</au><au>Ma, Hao</au><au>Yan, Sen</au><au>Lu, Xinyu</au><au>Tang, Hui</au><au>Xi, Xiao-Han</au><au>Peng, Xiao-Hui</au><au>Huang, Yajun</au><au>Bao, Yi-Fan</au><au>Cao, Mao-Feng</au><au>Wang, Huimeng</au><au>Huang, Jinglin</au><au>Liu, Guokun</au><au>Wang, Xiang</au><au>Ren, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2022-11-30</date><risdate>2022</risdate><volume>13</volume><issue>46</issue><spage>13829</spage><epage>13835</epage><pages>13829-13835</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which makes it a promising tool for proteomics. It is still challenging to obtain SERS spectra of proteins in the native state and evaluate the native degree. Here, we constructed 3D physiological hotspots for a label-free dynamic SERS characterization of a native protein with iodide-modified 140 nm Au nanoparticles. We further introduced the correlation coefficient to quantitatively evaluate the variation of the native degree, whose quantitative nature allows us to explicitly investigate the Hofmeister effect on the protein structure. We realized the classification of a protein of SARS-CoV-2 variants in 15 min, which has not been achieved before. This study offers an effective tool for tracking the dynamic structure of proteins and biomedical research. Iodide modified Au nanoparticles combined with correlation coefficient allows label-free SERS characterization of proteins in native state and analysis of Hofmeister effect on protein structure, further enabling identification of protein variants.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36544733</pmid><doi>10.1039/d2sc04775f</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9821-5864</orcidid><orcidid>https://orcid.org/0000-0001-6316-5898</orcidid><orcidid>https://orcid.org/0000-0001-8341-4003</orcidid><orcidid>https://orcid.org/0000-0003-2501-7178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2022-11, Vol.13 (46), p.13829-13835
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_D2SC04775F
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Chemistry
Coefficient of variation
Correlation coefficients
Evaluation
Gold
Nanoparticles
Proteins
Proteomics
Raman spectroscopy
Severe acute respiratory syndrome coronavirus 2
Spectrum analysis
title Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20coefficient-directed%20label-free%20characterization%20of%20native%20proteins%20by%20surface-enhanced%20Raman%20spectroscopy&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Wang,%20Ping-Shi&rft.date=2022-11-30&rft.volume=13&rft.issue=46&rft.spage=13829&rft.epage=13835&rft.pages=13829-13835&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d2sc04775f&rft_dat=%3Cproquest_cross%3E2757161329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2741273221&rft_id=info:pmid/36544733&rfr_iscdi=true