Precisely synthesized LiF-tipped CoF 2 -nanorod heterostructures improve energy storage capacities
CoF , with a relatively high theoretical capacity (553 mA h g ), has been attracting increasing attention in the energy storage field. However, a facile and controllable synthesis of monodispersed CoF and CoF -based nano-heterostructures have been rarely reported. In this direction, an eco-friendly...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2022-11, Vol.13 (42), p.12367-12373 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12373 |
---|---|
container_issue | 42 |
container_start_page | 12367 |
container_title | Chemical science (Cambridge) |
container_volume | 13 |
creator | Wang, Siyuan Fu, Hao Ma, Jiamin Shi, Xiaomeng Wang, Huimin Yin, Zongyou Zhang, Shuai Jin, Mengdie Zhong, Ziyun Zhai, Xinyun Du, Yaping |
description | CoF
, with a relatively high theoretical capacity (553 mA h g
), has been attracting increasing attention in the energy storage field. However, a facile and controllable synthesis of monodispersed CoF
and CoF
-based nano-heterostructures have been rarely reported. In this direction, an eco-friendly and precisely controlled colloidal synthesis strategy to grow uniformly sized CoF
nanorods and LiF-tipped CoF
-nanorod heterostructures based on a seeded-growth method is established. The unveiled selective growth of LiF nanoparticles onto the two end tips of the CoF
nanorods is associated with the higher energy of tips, which favors the nucleation of LiF nanocrystals. Notably, it was found that LiF could protect CoF
from corrosion even after 9 months of aging. In addition, the as-obtained heterostructures were employed in supercapacitors and lithium sulfur batteries as cathode materials. The heterostructures consistently exhibited higher specific capacities than the corresponding two single components in both types of energy storage devices, making it a potential electrode material for energy storage applications. |
doi_str_mv | 10.1039/D2SC04008E |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2SC04008E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36382279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c999-9dca2c475c1ff034cfdc73eb9b3de9b8de619439c392f75ca9476ca68f8a89f13</originalsourceid><addsrcrecordid>eNpFkE1Lw0AURQdRbKnd-ANk1kJ0PtIkbymxUSGgYPdhMvOmHWmTMDMV6q83Uq1vc-_icHkcQq45u-NMwv2jeC9ZylixPCNTwVKeZAsJ56cu2ITMQ_hg40nJFyK_JBOZyUKIHKakffOoXcDtgYZDFzcY3BcaWrsqiW4Yxlr2FRU06VTX-97QDUb0fYh-r-PeY6BuN_j-Eyl26NfjSuy9WiPValDaRYfhilxYtQ04_80ZWVXLVfmc1K9PL-VDnWgASMBoJXSaLzS3lslUW6NziS200iC0hcGMQypBSxB2pBSkeaZVVthCFWC5nJHb46we3wsebTN4t1P-0HDW_Khq_lWN8M0RHvbtDs0J_RMjvwFHTWWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Precisely synthesized LiF-tipped CoF 2 -nanorod heterostructures improve energy storage capacities</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Wang, Siyuan ; Fu, Hao ; Ma, Jiamin ; Shi, Xiaomeng ; Wang, Huimin ; Yin, Zongyou ; Zhang, Shuai ; Jin, Mengdie ; Zhong, Ziyun ; Zhai, Xinyun ; Du, Yaping</creator><creatorcontrib>Wang, Siyuan ; Fu, Hao ; Ma, Jiamin ; Shi, Xiaomeng ; Wang, Huimin ; Yin, Zongyou ; Zhang, Shuai ; Jin, Mengdie ; Zhong, Ziyun ; Zhai, Xinyun ; Du, Yaping</creatorcontrib><description>CoF
, with a relatively high theoretical capacity (553 mA h g
), has been attracting increasing attention in the energy storage field. However, a facile and controllable synthesis of monodispersed CoF
and CoF
-based nano-heterostructures have been rarely reported. In this direction, an eco-friendly and precisely controlled colloidal synthesis strategy to grow uniformly sized CoF
nanorods and LiF-tipped CoF
-nanorod heterostructures based on a seeded-growth method is established. The unveiled selective growth of LiF nanoparticles onto the two end tips of the CoF
nanorods is associated with the higher energy of tips, which favors the nucleation of LiF nanocrystals. Notably, it was found that LiF could protect CoF
from corrosion even after 9 months of aging. In addition, the as-obtained heterostructures were employed in supercapacitors and lithium sulfur batteries as cathode materials. The heterostructures consistently exhibited higher specific capacities than the corresponding two single components in both types of energy storage devices, making it a potential electrode material for energy storage applications.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/D2SC04008E</identifier><identifier>PMID: 36382279</identifier><language>eng</language><publisher>England</publisher><ispartof>Chemical science (Cambridge), 2022-11, Vol.13 (42), p.12367-12373</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c999-9dca2c475c1ff034cfdc73eb9b3de9b8de619439c392f75ca9476ca68f8a89f13</citedby><cites>FETCH-LOGICAL-c999-9dca2c475c1ff034cfdc73eb9b3de9b8de619439c392f75ca9476ca68f8a89f13</cites><orcidid>0000-0002-0800-4490 ; 0000-0002-9937-2087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36382279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Siyuan</creatorcontrib><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Ma, Jiamin</creatorcontrib><creatorcontrib>Shi, Xiaomeng</creatorcontrib><creatorcontrib>Wang, Huimin</creatorcontrib><creatorcontrib>Yin, Zongyou</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Jin, Mengdie</creatorcontrib><creatorcontrib>Zhong, Ziyun</creatorcontrib><creatorcontrib>Zhai, Xinyun</creatorcontrib><creatorcontrib>Du, Yaping</creatorcontrib><title>Precisely synthesized LiF-tipped CoF 2 -nanorod heterostructures improve energy storage capacities</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>CoF
, with a relatively high theoretical capacity (553 mA h g
), has been attracting increasing attention in the energy storage field. However, a facile and controllable synthesis of monodispersed CoF
and CoF
-based nano-heterostructures have been rarely reported. In this direction, an eco-friendly and precisely controlled colloidal synthesis strategy to grow uniformly sized CoF
nanorods and LiF-tipped CoF
-nanorod heterostructures based on a seeded-growth method is established. The unveiled selective growth of LiF nanoparticles onto the two end tips of the CoF
nanorods is associated with the higher energy of tips, which favors the nucleation of LiF nanocrystals. Notably, it was found that LiF could protect CoF
from corrosion even after 9 months of aging. In addition, the as-obtained heterostructures were employed in supercapacitors and lithium sulfur batteries as cathode materials. The heterostructures consistently exhibited higher specific capacities than the corresponding two single components in both types of energy storage devices, making it a potential electrode material for energy storage applications.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AURQdRbKnd-ANk1kJ0PtIkbymxUSGgYPdhMvOmHWmTMDMV6q83Uq1vc-_icHkcQq45u-NMwv2jeC9ZylixPCNTwVKeZAsJ56cu2ITMQ_hg40nJFyK_JBOZyUKIHKakffOoXcDtgYZDFzcY3BcaWrsqiW4Yxlr2FRU06VTX-97QDUb0fYh-r-PeY6BuN_j-Eyl26NfjSuy9WiPValDaRYfhilxYtQ04_80ZWVXLVfmc1K9PL-VDnWgASMBoJXSaLzS3lslUW6NziS200iC0hcGMQypBSxB2pBSkeaZVVthCFWC5nJHb46we3wsebTN4t1P-0HDW_Khq_lWN8M0RHvbtDs0J_RMjvwFHTWWY</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Wang, Siyuan</creator><creator>Fu, Hao</creator><creator>Ma, Jiamin</creator><creator>Shi, Xiaomeng</creator><creator>Wang, Huimin</creator><creator>Yin, Zongyou</creator><creator>Zhang, Shuai</creator><creator>Jin, Mengdie</creator><creator>Zhong, Ziyun</creator><creator>Zhai, Xinyun</creator><creator>Du, Yaping</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0800-4490</orcidid><orcidid>https://orcid.org/0000-0002-9937-2087</orcidid></search><sort><creationdate>20221102</creationdate><title>Precisely synthesized LiF-tipped CoF 2 -nanorod heterostructures improve energy storage capacities</title><author>Wang, Siyuan ; Fu, Hao ; Ma, Jiamin ; Shi, Xiaomeng ; Wang, Huimin ; Yin, Zongyou ; Zhang, Shuai ; Jin, Mengdie ; Zhong, Ziyun ; Zhai, Xinyun ; Du, Yaping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c999-9dca2c475c1ff034cfdc73eb9b3de9b8de619439c392f75ca9476ca68f8a89f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siyuan</creatorcontrib><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Ma, Jiamin</creatorcontrib><creatorcontrib>Shi, Xiaomeng</creatorcontrib><creatorcontrib>Wang, Huimin</creatorcontrib><creatorcontrib>Yin, Zongyou</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Jin, Mengdie</creatorcontrib><creatorcontrib>Zhong, Ziyun</creatorcontrib><creatorcontrib>Zhai, Xinyun</creatorcontrib><creatorcontrib>Du, Yaping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siyuan</au><au>Fu, Hao</au><au>Ma, Jiamin</au><au>Shi, Xiaomeng</au><au>Wang, Huimin</au><au>Yin, Zongyou</au><au>Zhang, Shuai</au><au>Jin, Mengdie</au><au>Zhong, Ziyun</au><au>Zhai, Xinyun</au><au>Du, Yaping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precisely synthesized LiF-tipped CoF 2 -nanorod heterostructures improve energy storage capacities</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2022-11-02</date><risdate>2022</risdate><volume>13</volume><issue>42</issue><spage>12367</spage><epage>12373</epage><pages>12367-12373</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>CoF
, with a relatively high theoretical capacity (553 mA h g
), has been attracting increasing attention in the energy storage field. However, a facile and controllable synthesis of monodispersed CoF
and CoF
-based nano-heterostructures have been rarely reported. In this direction, an eco-friendly and precisely controlled colloidal synthesis strategy to grow uniformly sized CoF
nanorods and LiF-tipped CoF
-nanorod heterostructures based on a seeded-growth method is established. The unveiled selective growth of LiF nanoparticles onto the two end tips of the CoF
nanorods is associated with the higher energy of tips, which favors the nucleation of LiF nanocrystals. Notably, it was found that LiF could protect CoF
from corrosion even after 9 months of aging. In addition, the as-obtained heterostructures were employed in supercapacitors and lithium sulfur batteries as cathode materials. The heterostructures consistently exhibited higher specific capacities than the corresponding two single components in both types of energy storage devices, making it a potential electrode material for energy storage applications.</abstract><cop>England</cop><pmid>36382279</pmid><doi>10.1039/D2SC04008E</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0800-4490</orcidid><orcidid>https://orcid.org/0000-0002-9937-2087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2022-11, Vol.13 (42), p.12367-12373 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2SC04008E |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
title | Precisely synthesized LiF-tipped CoF 2 -nanorod heterostructures improve energy storage capacities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precisely%20synthesized%20LiF-tipped%20CoF%202%20-nanorod%20heterostructures%20improve%20energy%20storage%20capacities&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Wang,%20Siyuan&rft.date=2022-11-02&rft.volume=13&rft.issue=42&rft.spage=12367&rft.epage=12373&rft.pages=12367-12373&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/D2SC04008E&rft_dat=%3Cpubmed_cross%3E36382279%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36382279&rfr_iscdi=true |