Unravelling the ultrafast charge dynamics in PbS quantum dots through resonant Auger mapping of the sulfur K-edge
There is a great fundamental interest in charge dynamics of PbS quantum dots, as they are promising for application in photovoltaics and other optoelectronic devices. The ultrafast charge transport is intriguing, offering insight into the mechanism of electron tunneling processes within the material...
Gespeichert in:
Veröffentlicht in: | RSC advances 2022-11, Vol.12 (49), p.31671-31679 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31679 |
---|---|
container_issue | 49 |
container_start_page | 31671 |
container_title | RSC advances |
container_volume | 12 |
creator | Sloboda, Tamara Johansson, Fredrik O. L Kammlander, Birgit Berggren, Elin Svanström, Sebastian Fernández, Alberto García Lindblad, Andreas Cappel, Ute B |
description | There is a great fundamental interest in charge dynamics of PbS quantum dots, as they are promising for application in photovoltaics and other optoelectronic devices. The ultrafast charge transport is intriguing, offering insight into the mechanism of electron tunneling processes within the material. In this study, we investigated the charge transfer times of PbS quantum dots of different sizes and non-quantized PbS reference materials by comparing the propensity of localized or delocalized decays of sulfur 1s core hole states excited by X-rays. We show that charge transfer times in PbS quantum dots decrease with excitation energy and are similar at high excitation energy for quantum dots and non-quantized PbS. However, at low excitation energies a distinct difference in charge transfer time is observed with the fastest charge transfer in non-quantized PbS and the slowest in the smallest quantum dots. Our observations can be explained by iodide ligands on the quantum dots creating a barrier for charge transfer, which reduces the probability of interparticle transfer at low excitation energies. The probability of intraparticle charge transfer is limited by the density of available states which we describe according to a wave function in a quantum well model. The stronger quantum confinement effect in smaller PbS quantum dots is manifested as longer charge transfer times relative to the larger quantum dots at low excitation energies.
By measuring the resonant S-KLL Auger decay we investigate the attosecond charge transfer in PbS quantum dots of different sizes. The results show both intra- and interparticle charge transfer, where the former shows a strong QD size dependence. |
doi_str_mv | 10.1039/d2ra06091d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2RA06091D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737116361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-1699aef6349929a2111016b5313bb40b579de3a1d2fc75613197fc6cc4bf3a843</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXphTvIEheoCHjsxFlfKq26QBErgYBytRzH-SiJvWvHi_rv6zRlaXvBl7Fmnnnt-UiS54DfAab8fUWcxAxzqB4lhwRnLCWY8cd37gfJsfeXOB6WA2HwNDmgjC4wJ8Vhsr0wTu5033emQWOrUehHJ2vpR6Ra6RqNqisjh0551Bn0rfyBtkGaMQyosqOPGc6GpkVOe2uiHy1Dox0a5GYzCdr6RtOHvg4OfUl11ehnyZNa9l4f39qj5OLjh59n5-n666fPZ8t1qnJajCkwzqWuGc04J1wSAMDAypwCLcsMl3nBK00lVKRWRc6AAi9qxZTKyprKRUaPkrezrv-jN6EUG9cN0l0JKzux6n4thXWNCEFkC05zHvH0__jvsRWUAMcTfzrzER50pbSJfevvpd2PmK4Vjd0JHksqoIgCb2aB9kHa-XItJl-cboYpoTuI7Ovbx5zdBu1HMXRexalJo23wghS0AGCUTeirB-ilDc7ETk8UY3kRTaROZko5673T9f4HgMW0V2JFvi9v9moV4Zd3S92jf7coAi9mwHm1j_5bTHoNn13SCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736657273</pqid></control><display><type>article</type><title>Unravelling the ultrafast charge dynamics in PbS quantum dots through resonant Auger mapping of the sulfur K-edge</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>PubMed Central Open Access</source><creator>Sloboda, Tamara ; Johansson, Fredrik O. L ; Kammlander, Birgit ; Berggren, Elin ; Svanström, Sebastian ; Fernández, Alberto García ; Lindblad, Andreas ; Cappel, Ute B</creator><creatorcontrib>Sloboda, Tamara ; Johansson, Fredrik O. L ; Kammlander, Birgit ; Berggren, Elin ; Svanström, Sebastian ; Fernández, Alberto García ; Lindblad, Andreas ; Cappel, Ute B</creatorcontrib><description>There is a great fundamental interest in charge dynamics of PbS quantum dots, as they are promising for application in photovoltaics and other optoelectronic devices. The ultrafast charge transport is intriguing, offering insight into the mechanism of electron tunneling processes within the material. In this study, we investigated the charge transfer times of PbS quantum dots of different sizes and non-quantized PbS reference materials by comparing the propensity of localized or delocalized decays of sulfur 1s core hole states excited by X-rays. We show that charge transfer times in PbS quantum dots decrease with excitation energy and are similar at high excitation energy for quantum dots and non-quantized PbS. However, at low excitation energies a distinct difference in charge transfer time is observed with the fastest charge transfer in non-quantized PbS and the slowest in the smallest quantum dots. Our observations can be explained by iodide ligands on the quantum dots creating a barrier for charge transfer, which reduces the probability of interparticle transfer at low excitation energies. The probability of intraparticle charge transfer is limited by the density of available states which we describe according to a wave function in a quantum well model. The stronger quantum confinement effect in smaller PbS quantum dots is manifested as longer charge transfer times relative to the larger quantum dots at low excitation energies.
By measuring the resonant S-KLL Auger decay we investigate the attosecond charge transfer in PbS quantum dots of different sizes. The results show both intra- and interparticle charge transfer, where the former shows a strong QD size dependence.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra06091d</identifier><identifier>PMID: 36380927</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Augers ; Charge transport ; Chemical Sciences ; Chemistry ; Electron tunneling ; Excitation ; Optoelectronic devices ; or physical chemistry ; Photovoltaic cells ; Quantum confinement ; Quantum dots ; Quantum wells ; Sulfur ; Theoretical and ; Wave functions</subject><ispartof>RSC advances, 2022-11, Vol.12 (49), p.31671-31679</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-1699aef6349929a2111016b5313bb40b579de3a1d2fc75613197fc6cc4bf3a843</citedby><cites>FETCH-LOGICAL-c537t-1699aef6349929a2111016b5313bb40b579de3a1d2fc75613197fc6cc4bf3a843</cites><orcidid>0000-0002-9432-3112 ; 0000-0003-1671-9979 ; 0000-0002-6471-1093 ; 0000-0001-8693-0492 ; 0000-0002-9188-9604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634717/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634717/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36380927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03940323$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-321909$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-489359$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sloboda, Tamara</creatorcontrib><creatorcontrib>Johansson, Fredrik O. L</creatorcontrib><creatorcontrib>Kammlander, Birgit</creatorcontrib><creatorcontrib>Berggren, Elin</creatorcontrib><creatorcontrib>Svanström, Sebastian</creatorcontrib><creatorcontrib>Fernández, Alberto García</creatorcontrib><creatorcontrib>Lindblad, Andreas</creatorcontrib><creatorcontrib>Cappel, Ute B</creatorcontrib><title>Unravelling the ultrafast charge dynamics in PbS quantum dots through resonant Auger mapping of the sulfur K-edge</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>There is a great fundamental interest in charge dynamics of PbS quantum dots, as they are promising for application in photovoltaics and other optoelectronic devices. The ultrafast charge transport is intriguing, offering insight into the mechanism of electron tunneling processes within the material. In this study, we investigated the charge transfer times of PbS quantum dots of different sizes and non-quantized PbS reference materials by comparing the propensity of localized or delocalized decays of sulfur 1s core hole states excited by X-rays. We show that charge transfer times in PbS quantum dots decrease with excitation energy and are similar at high excitation energy for quantum dots and non-quantized PbS. However, at low excitation energies a distinct difference in charge transfer time is observed with the fastest charge transfer in non-quantized PbS and the slowest in the smallest quantum dots. Our observations can be explained by iodide ligands on the quantum dots creating a barrier for charge transfer, which reduces the probability of interparticle transfer at low excitation energies. The probability of intraparticle charge transfer is limited by the density of available states which we describe according to a wave function in a quantum well model. The stronger quantum confinement effect in smaller PbS quantum dots is manifested as longer charge transfer times relative to the larger quantum dots at low excitation energies.
By measuring the resonant S-KLL Auger decay we investigate the attosecond charge transfer in PbS quantum dots of different sizes. The results show both intra- and interparticle charge transfer, where the former shows a strong QD size dependence.</description><subject>Augers</subject><subject>Charge transport</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Electron tunneling</subject><subject>Excitation</subject><subject>Optoelectronic devices</subject><subject>or physical chemistry</subject><subject>Photovoltaic cells</subject><subject>Quantum confinement</subject><subject>Quantum dots</subject><subject>Quantum wells</subject><subject>Sulfur</subject><subject>Theoretical and</subject><subject>Wave functions</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNqFkk1v1DAQhiMEolXphTvIEheoCHjsxFlfKq26QBErgYBytRzH-SiJvWvHi_rv6zRlaXvBl7Fmnnnt-UiS54DfAab8fUWcxAxzqB4lhwRnLCWY8cd37gfJsfeXOB6WA2HwNDmgjC4wJ8Vhsr0wTu5033emQWOrUehHJ2vpR6Ra6RqNqisjh0551Bn0rfyBtkGaMQyosqOPGc6GpkVOe2uiHy1Dox0a5GYzCdr6RtOHvg4OfUl11ehnyZNa9l4f39qj5OLjh59n5-n666fPZ8t1qnJajCkwzqWuGc04J1wSAMDAypwCLcsMl3nBK00lVKRWRc6AAi9qxZTKyprKRUaPkrezrv-jN6EUG9cN0l0JKzux6n4thXWNCEFkC05zHvH0__jvsRWUAMcTfzrzER50pbSJfevvpd2PmK4Vjd0JHksqoIgCb2aB9kHa-XItJl-cboYpoTuI7Ovbx5zdBu1HMXRexalJo23wghS0AGCUTeirB-ilDc7ETk8UY3kRTaROZko5673T9f4HgMW0V2JFvi9v9moV4Zd3S92jf7coAi9mwHm1j_5bTHoNn13SCg</recordid><startdate>20221103</startdate><enddate>20221103</enddate><creator>Sloboda, Tamara</creator><creator>Johansson, Fredrik O. L</creator><creator>Kammlander, Birgit</creator><creator>Berggren, Elin</creator><creator>Svanström, Sebastian</creator><creator>Fernández, Alberto García</creator><creator>Lindblad, Andreas</creator><creator>Cappel, Ute B</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>ACNBI</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-9432-3112</orcidid><orcidid>https://orcid.org/0000-0003-1671-9979</orcidid><orcidid>https://orcid.org/0000-0002-6471-1093</orcidid><orcidid>https://orcid.org/0000-0001-8693-0492</orcidid><orcidid>https://orcid.org/0000-0002-9188-9604</orcidid></search><sort><creationdate>20221103</creationdate><title>Unravelling the ultrafast charge dynamics in PbS quantum dots through resonant Auger mapping of the sulfur K-edge</title><author>Sloboda, Tamara ; Johansson, Fredrik O. L ; Kammlander, Birgit ; Berggren, Elin ; Svanström, Sebastian ; Fernández, Alberto García ; Lindblad, Andreas ; Cappel, Ute B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-1699aef6349929a2111016b5313bb40b579de3a1d2fc75613197fc6cc4bf3a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Augers</topic><topic>Charge transport</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Electron tunneling</topic><topic>Excitation</topic><topic>Optoelectronic devices</topic><topic>or physical chemistry</topic><topic>Photovoltaic cells</topic><topic>Quantum confinement</topic><topic>Quantum dots</topic><topic>Quantum wells</topic><topic>Sulfur</topic><topic>Theoretical and</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sloboda, Tamara</creatorcontrib><creatorcontrib>Johansson, Fredrik O. L</creatorcontrib><creatorcontrib>Kammlander, Birgit</creatorcontrib><creatorcontrib>Berggren, Elin</creatorcontrib><creatorcontrib>Svanström, Sebastian</creatorcontrib><creatorcontrib>Fernández, Alberto García</creatorcontrib><creatorcontrib>Lindblad, Andreas</creatorcontrib><creatorcontrib>Cappel, Ute B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sloboda, Tamara</au><au>Johansson, Fredrik O. L</au><au>Kammlander, Birgit</au><au>Berggren, Elin</au><au>Svanström, Sebastian</au><au>Fernández, Alberto García</au><au>Lindblad, Andreas</au><au>Cappel, Ute B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling the ultrafast charge dynamics in PbS quantum dots through resonant Auger mapping of the sulfur K-edge</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2022-11-03</date><risdate>2022</risdate><volume>12</volume><issue>49</issue><spage>31671</spage><epage>31679</epage><pages>31671-31679</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>There is a great fundamental interest in charge dynamics of PbS quantum dots, as they are promising for application in photovoltaics and other optoelectronic devices. The ultrafast charge transport is intriguing, offering insight into the mechanism of electron tunneling processes within the material. In this study, we investigated the charge transfer times of PbS quantum dots of different sizes and non-quantized PbS reference materials by comparing the propensity of localized or delocalized decays of sulfur 1s core hole states excited by X-rays. We show that charge transfer times in PbS quantum dots decrease with excitation energy and are similar at high excitation energy for quantum dots and non-quantized PbS. However, at low excitation energies a distinct difference in charge transfer time is observed with the fastest charge transfer in non-quantized PbS and the slowest in the smallest quantum dots. Our observations can be explained by iodide ligands on the quantum dots creating a barrier for charge transfer, which reduces the probability of interparticle transfer at low excitation energies. The probability of intraparticle charge transfer is limited by the density of available states which we describe according to a wave function in a quantum well model. The stronger quantum confinement effect in smaller PbS quantum dots is manifested as longer charge transfer times relative to the larger quantum dots at low excitation energies.
By measuring the resonant S-KLL Auger decay we investigate the attosecond charge transfer in PbS quantum dots of different sizes. The results show both intra- and interparticle charge transfer, where the former shows a strong QD size dependence.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36380927</pmid><doi>10.1039/d2ra06091d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9432-3112</orcidid><orcidid>https://orcid.org/0000-0003-1671-9979</orcidid><orcidid>https://orcid.org/0000-0002-6471-1093</orcidid><orcidid>https://orcid.org/0000-0001-8693-0492</orcidid><orcidid>https://orcid.org/0000-0002-9188-9604</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2022-11, Vol.12 (49), p.31671-31679 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2RA06091D |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; PubMed Central Open Access |
subjects | Augers Charge transport Chemical Sciences Chemistry Electron tunneling Excitation Optoelectronic devices or physical chemistry Photovoltaic cells Quantum confinement Quantum dots Quantum wells Sulfur Theoretical and Wave functions |
title | Unravelling the ultrafast charge dynamics in PbS quantum dots through resonant Auger mapping of the sulfur K-edge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20the%20ultrafast%20charge%20dynamics%20in%20PbS%20quantum%20dots%20through%20resonant%20Auger%20mapping%20of%20the%20sulfur%20K-edge&rft.jtitle=RSC%20advances&rft.au=Sloboda,%20Tamara&rft.date=2022-11-03&rft.volume=12&rft.issue=49&rft.spage=31671&rft.epage=31679&rft.pages=31671-31679&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra06091d&rft_dat=%3Cproquest_cross%3E2737116361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736657273&rft_id=info:pmid/36380927&rfr_iscdi=true |