Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection
2D transition metal dichalcogenide MoS monolayer quantum dots (MoS -QD) and their doped boron (B@MoS -QD), nitrogen (N@MoS -QD), phosphorus (P@MoS -QD), and silicon (Si@MoS -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechan...
Gespeichert in:
Veröffentlicht in: | RSC advances 2022-09, Vol.12 (40), p.25992-26010 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26010 |
---|---|
container_issue | 40 |
container_start_page | 25992 |
container_title | RSC advances |
container_volume | 12 |
creator | Gber, Terkumbur E Louis, Hitler Owen, Aniekan E Etinwa, Benjamin E Benjamin, Innocent Asogwa, Fredrick C Orosun, Muyiwa M Eno, Ededet A |
description | 2D transition metal dichalcogenide MoS
monolayer quantum dots (MoS
-QD) and their doped boron (B@MoS
-QD), nitrogen (N@MoS
-QD), phosphorus (P@MoS
-QD), and silicon (Si@MoS
-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH
gas. The results from electronic properties showed that P@MoS
-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS
-QD surface, signifying the preferred chemisorption surface for NH
detection. The mechanistic studies provided in this study also indicate that the P@MoS
-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS
dopants, specifically the P@MoS
-QD surface, as a promising candidate for sensors to detect gas. |
doi_str_mv | 10.1039/d2ra04028j |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2RA04028J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36199611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c991-300ee202d54fcc8247c60788d99a4ad7185e2807ecf8760cf86bbab565c088c73</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EolXpwgegNwJK4NlJHHssLVBQWxDtHjm2g1I1dWWHoX9PoIC4w7tvOLrDIeSc4g3FRN4a5hWmyMT6iPQZpjxmyOXxv79HhiGssQvPKOP0lPQSTqXklPbJfGpb651qXRPgcllHcBfBIgK1NfB6BcbtrAE2gcZt3UbtrYe5WwKDynlYTCGBdxXAdBu6rd32jJxUahPs8KcHZPVwvxpP49nL49N4NIu1lDROEK1lyEyWVloLluaaYy6EkVKlyuRUZJYJzK2uRM6xu7wsVZnxTKMQOk8G5Powq70Lwduq2Pm6UX5fUCy-rBQT9jb6tvLcwRcHePdRNtb8ob8Okk8QSliQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</creator><creatorcontrib>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</creatorcontrib><description>2D transition metal dichalcogenide MoS
monolayer quantum dots (MoS
-QD) and their doped boron (B@MoS
-QD), nitrogen (N@MoS
-QD), phosphorus (P@MoS
-QD), and silicon (Si@MoS
-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH
gas. The results from electronic properties showed that P@MoS
-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS
-QD surface, signifying the preferred chemisorption surface for NH
detection. The mechanistic studies provided in this study also indicate that the P@MoS
-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS
dopants, specifically the P@MoS
-QD surface, as a promising candidate for sensors to detect gas.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra04028j</identifier><identifier>PMID: 36199611</identifier><language>eng</language><publisher>England</publisher><ispartof>RSC advances, 2022-09, Vol.12 (40), p.25992-26010</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c991-300ee202d54fcc8247c60788d99a4ad7185e2807ecf8760cf86bbab565c088c73</citedby><cites>FETCH-LOGICAL-c991-300ee202d54fcc8247c60788d99a4ad7185e2807ecf8760cf86bbab565c088c73</cites><orcidid>0000-0002-0236-3345 ; 0000-0002-0286-2865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36199611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gber, Terkumbur E</creatorcontrib><creatorcontrib>Louis, Hitler</creatorcontrib><creatorcontrib>Owen, Aniekan E</creatorcontrib><creatorcontrib>Etinwa, Benjamin E</creatorcontrib><creatorcontrib>Benjamin, Innocent</creatorcontrib><creatorcontrib>Asogwa, Fredrick C</creatorcontrib><creatorcontrib>Orosun, Muyiwa M</creatorcontrib><creatorcontrib>Eno, Ededet A</creatorcontrib><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>2D transition metal dichalcogenide MoS
monolayer quantum dots (MoS
-QD) and their doped boron (B@MoS
-QD), nitrogen (N@MoS
-QD), phosphorus (P@MoS
-QD), and silicon (Si@MoS
-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH
gas. The results from electronic properties showed that P@MoS
-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS
-QD surface, signifying the preferred chemisorption surface for NH
detection. The mechanistic studies provided in this study also indicate that the P@MoS
-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS
dopants, specifically the P@MoS
-QD surface, as a promising candidate for sensors to detect gas.</description><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EolXpwgegNwJK4NlJHHssLVBQWxDtHjm2g1I1dWWHoX9PoIC4w7tvOLrDIeSc4g3FRN4a5hWmyMT6iPQZpjxmyOXxv79HhiGssQvPKOP0lPQSTqXklPbJfGpb651qXRPgcllHcBfBIgK1NfB6BcbtrAE2gcZt3UbtrYe5WwKDynlYTCGBdxXAdBu6rd32jJxUahPs8KcHZPVwvxpP49nL49N4NIu1lDROEK1lyEyWVloLluaaYy6EkVKlyuRUZJYJzK2uRM6xu7wsVZnxTKMQOk8G5Powq70Lwduq2Pm6UX5fUCy-rBQT9jb6tvLcwRcHePdRNtb8ob8Okk8QSliQ</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Gber, Terkumbur E</creator><creator>Louis, Hitler</creator><creator>Owen, Aniekan E</creator><creator>Etinwa, Benjamin E</creator><creator>Benjamin, Innocent</creator><creator>Asogwa, Fredrick C</creator><creator>Orosun, Muyiwa M</creator><creator>Eno, Ededet A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0236-3345</orcidid><orcidid>https://orcid.org/0000-0002-0286-2865</orcidid></search><sort><creationdate>20220912</creationdate><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection</title><author>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c991-300ee202d54fcc8247c60788d99a4ad7185e2807ecf8760cf86bbab565c088c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gber, Terkumbur E</creatorcontrib><creatorcontrib>Louis, Hitler</creatorcontrib><creatorcontrib>Owen, Aniekan E</creatorcontrib><creatorcontrib>Etinwa, Benjamin E</creatorcontrib><creatorcontrib>Benjamin, Innocent</creatorcontrib><creatorcontrib>Asogwa, Fredrick C</creatorcontrib><creatorcontrib>Orosun, Muyiwa M</creatorcontrib><creatorcontrib>Eno, Ededet A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gber, Terkumbur E</au><au>Louis, Hitler</au><au>Owen, Aniekan E</au><au>Etinwa, Benjamin E</au><au>Benjamin, Innocent</au><au>Asogwa, Fredrick C</au><au>Orosun, Muyiwa M</au><au>Eno, Ededet A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2022-09-12</date><risdate>2022</risdate><volume>12</volume><issue>40</issue><spage>25992</spage><epage>26010</epage><pages>25992-26010</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>2D transition metal dichalcogenide MoS
monolayer quantum dots (MoS
-QD) and their doped boron (B@MoS
-QD), nitrogen (N@MoS
-QD), phosphorus (P@MoS
-QD), and silicon (Si@MoS
-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH
gas. The results from electronic properties showed that P@MoS
-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS
-QD surface, signifying the preferred chemisorption surface for NH
detection. The mechanistic studies provided in this study also indicate that the P@MoS
-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS
dopants, specifically the P@MoS
-QD surface, as a promising candidate for sensors to detect gas.</abstract><cop>England</cop><pmid>36199611</pmid><doi>10.1039/d2ra04028j</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0236-3345</orcidid><orcidid>https://orcid.org/0000-0002-0286-2865</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2022-09, Vol.12 (40), p.25992-26010 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2RA04028J |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
title | Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroatoms%20(Si,%20B,%20N,%20and%20P)%20doped%202D%20monolayer%20MoS%202%20for%20NH%203%20gas%20detection&rft.jtitle=RSC%20advances&rft.au=Gber,%20Terkumbur%20E&rft.date=2022-09-12&rft.volume=12&rft.issue=40&rft.spage=25992&rft.epage=26010&rft.pages=25992-26010&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra04028j&rft_dat=%3Cpubmed_cross%3E36199611%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36199611&rfr_iscdi=true |