Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection

2D transition metal dichalcogenide MoS monolayer quantum dots (MoS -QD) and their doped boron (B@MoS -QD), nitrogen (N@MoS -QD), phosphorus (P@MoS -QD), and silicon (Si@MoS -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-09, Vol.12 (40), p.25992-26010
Hauptverfasser: Gber, Terkumbur E, Louis, Hitler, Owen, Aniekan E, Etinwa, Benjamin E, Benjamin, Innocent, Asogwa, Fredrick C, Orosun, Muyiwa M, Eno, Ededet A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26010
container_issue 40
container_start_page 25992
container_title RSC advances
container_volume 12
creator Gber, Terkumbur E
Louis, Hitler
Owen, Aniekan E
Etinwa, Benjamin E
Benjamin, Innocent
Asogwa, Fredrick C
Orosun, Muyiwa M
Eno, Ededet A
description 2D transition metal dichalcogenide MoS monolayer quantum dots (MoS -QD) and their doped boron (B@MoS -QD), nitrogen (N@MoS -QD), phosphorus (P@MoS -QD), and silicon (Si@MoS -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH gas. The results from electronic properties showed that P@MoS -QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS -QD surface, signifying the preferred chemisorption surface for NH detection. The mechanistic studies provided in this study also indicate that the P@MoS -QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS dopants, specifically the P@MoS -QD surface, as a promising candidate for sensors to detect gas.
doi_str_mv 10.1039/d2ra04028j
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2RA04028J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36199611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c991-300ee202d54fcc8247c60788d99a4ad7185e2807ecf8760cf86bbab565c088c73</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EolXpwgegNwJK4NlJHHssLVBQWxDtHjm2g1I1dWWHoX9PoIC4w7tvOLrDIeSc4g3FRN4a5hWmyMT6iPQZpjxmyOXxv79HhiGssQvPKOP0lPQSTqXklPbJfGpb651qXRPgcllHcBfBIgK1NfB6BcbtrAE2gcZt3UbtrYe5WwKDynlYTCGBdxXAdBu6rd32jJxUahPs8KcHZPVwvxpP49nL49N4NIu1lDROEK1lyEyWVloLluaaYy6EkVKlyuRUZJYJzK2uRM6xu7wsVZnxTKMQOk8G5Powq70Lwduq2Pm6UX5fUCy-rBQT9jb6tvLcwRcHePdRNtb8ob8Okk8QSliQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</creator><creatorcontrib>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</creatorcontrib><description>2D transition metal dichalcogenide MoS monolayer quantum dots (MoS -QD) and their doped boron (B@MoS -QD), nitrogen (N@MoS -QD), phosphorus (P@MoS -QD), and silicon (Si@MoS -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH gas. The results from electronic properties showed that P@MoS -QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS -QD surface, signifying the preferred chemisorption surface for NH detection. The mechanistic studies provided in this study also indicate that the P@MoS -QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS dopants, specifically the P@MoS -QD surface, as a promising candidate for sensors to detect gas.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra04028j</identifier><identifier>PMID: 36199611</identifier><language>eng</language><publisher>England</publisher><ispartof>RSC advances, 2022-09, Vol.12 (40), p.25992-26010</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c991-300ee202d54fcc8247c60788d99a4ad7185e2807ecf8760cf86bbab565c088c73</citedby><cites>FETCH-LOGICAL-c991-300ee202d54fcc8247c60788d99a4ad7185e2807ecf8760cf86bbab565c088c73</cites><orcidid>0000-0002-0236-3345 ; 0000-0002-0286-2865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36199611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gber, Terkumbur E</creatorcontrib><creatorcontrib>Louis, Hitler</creatorcontrib><creatorcontrib>Owen, Aniekan E</creatorcontrib><creatorcontrib>Etinwa, Benjamin E</creatorcontrib><creatorcontrib>Benjamin, Innocent</creatorcontrib><creatorcontrib>Asogwa, Fredrick C</creatorcontrib><creatorcontrib>Orosun, Muyiwa M</creatorcontrib><creatorcontrib>Eno, Ededet A</creatorcontrib><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>2D transition metal dichalcogenide MoS monolayer quantum dots (MoS -QD) and their doped boron (B@MoS -QD), nitrogen (N@MoS -QD), phosphorus (P@MoS -QD), and silicon (Si@MoS -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH gas. The results from electronic properties showed that P@MoS -QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS -QD surface, signifying the preferred chemisorption surface for NH detection. The mechanistic studies provided in this study also indicate that the P@MoS -QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS dopants, specifically the P@MoS -QD surface, as a promising candidate for sensors to detect gas.</description><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EolXpwgegNwJK4NlJHHssLVBQWxDtHjm2g1I1dWWHoX9PoIC4w7tvOLrDIeSc4g3FRN4a5hWmyMT6iPQZpjxmyOXxv79HhiGssQvPKOP0lPQSTqXklPbJfGpb651qXRPgcllHcBfBIgK1NfB6BcbtrAE2gcZt3UbtrYe5WwKDynlYTCGBdxXAdBu6rd32jJxUahPs8KcHZPVwvxpP49nL49N4NIu1lDROEK1lyEyWVloLluaaYy6EkVKlyuRUZJYJzK2uRM6xu7wsVZnxTKMQOk8G5Powq70Lwduq2Pm6UX5fUCy-rBQT9jb6tvLcwRcHePdRNtb8ob8Okk8QSliQ</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Gber, Terkumbur E</creator><creator>Louis, Hitler</creator><creator>Owen, Aniekan E</creator><creator>Etinwa, Benjamin E</creator><creator>Benjamin, Innocent</creator><creator>Asogwa, Fredrick C</creator><creator>Orosun, Muyiwa M</creator><creator>Eno, Ededet A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0236-3345</orcidid><orcidid>https://orcid.org/0000-0002-0286-2865</orcidid></search><sort><creationdate>20220912</creationdate><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection</title><author>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c991-300ee202d54fcc8247c60788d99a4ad7185e2807ecf8760cf86bbab565c088c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gber, Terkumbur E</creatorcontrib><creatorcontrib>Louis, Hitler</creatorcontrib><creatorcontrib>Owen, Aniekan E</creatorcontrib><creatorcontrib>Etinwa, Benjamin E</creatorcontrib><creatorcontrib>Benjamin, Innocent</creatorcontrib><creatorcontrib>Asogwa, Fredrick C</creatorcontrib><creatorcontrib>Orosun, Muyiwa M</creatorcontrib><creatorcontrib>Eno, Ededet A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gber, Terkumbur E</au><au>Louis, Hitler</au><au>Owen, Aniekan E</au><au>Etinwa, Benjamin E</au><au>Benjamin, Innocent</au><au>Asogwa, Fredrick C</au><au>Orosun, Muyiwa M</au><au>Eno, Ededet A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2022-09-12</date><risdate>2022</risdate><volume>12</volume><issue>40</issue><spage>25992</spage><epage>26010</epage><pages>25992-26010</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>2D transition metal dichalcogenide MoS monolayer quantum dots (MoS -QD) and their doped boron (B@MoS -QD), nitrogen (N@MoS -QD), phosphorus (P@MoS -QD), and silicon (Si@MoS -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH gas. The results from electronic properties showed that P@MoS -QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS -QD surface, signifying the preferred chemisorption surface for NH detection. The mechanistic studies provided in this study also indicate that the P@MoS -QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS dopants, specifically the P@MoS -QD surface, as a promising candidate for sensors to detect gas.</abstract><cop>England</cop><pmid>36199611</pmid><doi>10.1039/d2ra04028j</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0236-3345</orcidid><orcidid>https://orcid.org/0000-0002-0286-2865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2022-09, Vol.12 (40), p.25992-26010
issn 2046-2069
2046-2069
language eng
recordid cdi_crossref_primary_10_1039_D2RA04028J
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
title Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroatoms%20(Si,%20B,%20N,%20and%20P)%20doped%202D%20monolayer%20MoS%202%20for%20NH%203%20gas%20detection&rft.jtitle=RSC%20advances&rft.au=Gber,%20Terkumbur%20E&rft.date=2022-09-12&rft.volume=12&rft.issue=40&rft.spage=25992&rft.epage=26010&rft.pages=25992-26010&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra04028j&rft_dat=%3Cpubmed_cross%3E36199611%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36199611&rfr_iscdi=true