Thermally responsive polymers for overcoming thermal runaway in high-safety electrochemical storage devices

The thermal runaway of electrochemical storage devices (ESDs) under thermal abuse conditions causes many safety concerns, thus limiting their further application. However, traditional strategies of avoiding thermal runaway in ESDs are irreversible and have poor compatibility. Several strategies base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry frontiers 2023-04, Vol.7 (8), p.1562-159
Hauptverfasser: Chen, Shaoshan, Li, Yu, Feng, Yiyu, Feng, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 8
container_start_page 1562
container_title Materials chemistry frontiers
container_volume 7
creator Chen, Shaoshan
Li, Yu
Feng, Yiyu
Feng, Wei
description The thermal runaway of electrochemical storage devices (ESDs) under thermal abuse conditions causes many safety concerns, thus limiting their further application. However, traditional strategies of avoiding thermal runaway in ESDs are irreversible and have poor compatibility. Several strategies based on thermoresponsive polymers have been explored to prevent or inhibit the thermal runaway of ESDs due to rapid, reversible, and intelligent thermal responses at a specific trigger temperature. Herein, the recent progress in thermally responsive polymers for overcoming the thermal runaway for high-safety ESDs is summarized. Six strategies are considered: phase change, sol-gel transitions, thermal melting, thermal polymerization, thermal dedoping, and thermal expansion. The working mechanisms of these thermoresponsive polymers are discussed in turn, with a focus on the synthesis, electrochemical performance, and thermal responses for each strategy. Finally, the internal and external safety design features for preventing thermal runaway in ESDs are explored, including the optimization direction in packaging materials, electrodes, electrolytes, current collectors and separators. Six strategies for overcoming thermal runaway in high-safety electrochemical storage devices: phase change, sol-gel transitions, thermal melting, thermal polymerization, thermal dedoping, and thermal expansion.
doi_str_mv 10.1039/d2qm01342h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2QM01342H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2798983067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7e288930d241f6df84d3b6229abf019e0a46365c8116b151e9b089f89ae3faf93</originalsourceid><addsrcrecordid>eNpN0EtLxDAQwPEgCi7rXrwLAW9CNY8-kqOsjxVWRFjPJU0n265t0026lX57qxX1NHP4MQN_hM4puaaEy5uc7WtCeciKIzRjJGIBjXhy_G8_RQvvd4QQmiSMEzpD75sCXK2qasAOfGsbX_aAW1sNNTiPjXXY9uC0rctmi7sJY3do1IcacNngotwWgVcGugFDBbpzVhdQl3pkvrNObQHn0Jca_Bk6MarysPiZc_T2cL9ZroL1y-PT8nYdaCZoFyTAhJCc5CykJs6NCHOexYxJlRlCJRAVxjyOtKA0zmhEQWZESCOkAm6UkXyOLqe7rbP7A_gu3dmDa8aXKUukkIKTOBnV1aS0s947MGnrylq5IaUk_eqZ3rHX5--eqxFfTNh5_ev-evNPrWZzwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798983067</pqid></control><display><type>article</type><title>Thermally responsive polymers for overcoming thermal runaway in high-safety electrochemical storage devices</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Shaoshan ; Li, Yu ; Feng, Yiyu ; Feng, Wei</creator><creatorcontrib>Chen, Shaoshan ; Li, Yu ; Feng, Yiyu ; Feng, Wei</creatorcontrib><description>The thermal runaway of electrochemical storage devices (ESDs) under thermal abuse conditions causes many safety concerns, thus limiting their further application. However, traditional strategies of avoiding thermal runaway in ESDs are irreversible and have poor compatibility. Several strategies based on thermoresponsive polymers have been explored to prevent or inhibit the thermal runaway of ESDs due to rapid, reversible, and intelligent thermal responses at a specific trigger temperature. Herein, the recent progress in thermally responsive polymers for overcoming the thermal runaway for high-safety ESDs is summarized. Six strategies are considered: phase change, sol-gel transitions, thermal melting, thermal polymerization, thermal dedoping, and thermal expansion. The working mechanisms of these thermoresponsive polymers are discussed in turn, with a focus on the synthesis, electrochemical performance, and thermal responses for each strategy. Finally, the internal and external safety design features for preventing thermal runaway in ESDs are explored, including the optimization direction in packaging materials, electrodes, electrolytes, current collectors and separators. Six strategies for overcoming thermal runaway in high-safety electrochemical storage devices: phase change, sol-gel transitions, thermal melting, thermal polymerization, thermal dedoping, and thermal expansion.</description><identifier>ISSN: 2052-1537</identifier><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/d2qm01342h</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Electrochemical analysis ; Electrolytes ; Microwave heating ; Optimization ; Polymers ; Safety ; Sol-gel processes ; Thermal expansion ; Thermal runaway</subject><ispartof>Materials chemistry frontiers, 2023-04, Vol.7 (8), p.1562-159</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-7e288930d241f6df84d3b6229abf019e0a46365c8116b151e9b089f89ae3faf93</citedby><cites>FETCH-LOGICAL-c281t-7e288930d241f6df84d3b6229abf019e0a46365c8116b151e9b089f89ae3faf93</cites><orcidid>0000-0002-1071-1995 ; 0000-0002-5816-7343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Shaoshan</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Feng, Yiyu</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><title>Thermally responsive polymers for overcoming thermal runaway in high-safety electrochemical storage devices</title><title>Materials chemistry frontiers</title><description>The thermal runaway of electrochemical storage devices (ESDs) under thermal abuse conditions causes many safety concerns, thus limiting their further application. However, traditional strategies of avoiding thermal runaway in ESDs are irreversible and have poor compatibility. Several strategies based on thermoresponsive polymers have been explored to prevent or inhibit the thermal runaway of ESDs due to rapid, reversible, and intelligent thermal responses at a specific trigger temperature. Herein, the recent progress in thermally responsive polymers for overcoming the thermal runaway for high-safety ESDs is summarized. Six strategies are considered: phase change, sol-gel transitions, thermal melting, thermal polymerization, thermal dedoping, and thermal expansion. The working mechanisms of these thermoresponsive polymers are discussed in turn, with a focus on the synthesis, electrochemical performance, and thermal responses for each strategy. Finally, the internal and external safety design features for preventing thermal runaway in ESDs are explored, including the optimization direction in packaging materials, electrodes, electrolytes, current collectors and separators. Six strategies for overcoming thermal runaway in high-safety electrochemical storage devices: phase change, sol-gel transitions, thermal melting, thermal polymerization, thermal dedoping, and thermal expansion.</description><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Microwave heating</subject><subject>Optimization</subject><subject>Polymers</subject><subject>Safety</subject><subject>Sol-gel processes</subject><subject>Thermal expansion</subject><subject>Thermal runaway</subject><issn>2052-1537</issn><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpN0EtLxDAQwPEgCi7rXrwLAW9CNY8-kqOsjxVWRFjPJU0n265t0026lX57qxX1NHP4MQN_hM4puaaEy5uc7WtCeciKIzRjJGIBjXhy_G8_RQvvd4QQmiSMEzpD75sCXK2qasAOfGsbX_aAW1sNNTiPjXXY9uC0rctmi7sJY3do1IcacNngotwWgVcGugFDBbpzVhdQl3pkvrNObQHn0Jca_Bk6MarysPiZc_T2cL9ZroL1y-PT8nYdaCZoFyTAhJCc5CykJs6NCHOexYxJlRlCJRAVxjyOtKA0zmhEQWZESCOkAm6UkXyOLqe7rbP7A_gu3dmDa8aXKUukkIKTOBnV1aS0s947MGnrylq5IaUk_eqZ3rHX5--eqxFfTNh5_ev-evNPrWZzwA</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Chen, Shaoshan</creator><creator>Li, Yu</creator><creator>Feng, Yiyu</creator><creator>Feng, Wei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1071-1995</orcidid><orcidid>https://orcid.org/0000-0002-5816-7343</orcidid></search><sort><creationdate>20230411</creationdate><title>Thermally responsive polymers for overcoming thermal runaway in high-safety electrochemical storage devices</title><author>Chen, Shaoshan ; Li, Yu ; Feng, Yiyu ; Feng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7e288930d241f6df84d3b6229abf019e0a46365c8116b151e9b089f89ae3faf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Microwave heating</topic><topic>Optimization</topic><topic>Polymers</topic><topic>Safety</topic><topic>Sol-gel processes</topic><topic>Thermal expansion</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shaoshan</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Feng, Yiyu</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shaoshan</au><au>Li, Yu</au><au>Feng, Yiyu</au><au>Feng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally responsive polymers for overcoming thermal runaway in high-safety electrochemical storage devices</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2023-04-11</date><risdate>2023</risdate><volume>7</volume><issue>8</issue><spage>1562</spage><epage>159</epage><pages>1562-159</pages><issn>2052-1537</issn><eissn>2052-1537</eissn><abstract>The thermal runaway of electrochemical storage devices (ESDs) under thermal abuse conditions causes many safety concerns, thus limiting their further application. However, traditional strategies of avoiding thermal runaway in ESDs are irreversible and have poor compatibility. Several strategies based on thermoresponsive polymers have been explored to prevent or inhibit the thermal runaway of ESDs due to rapid, reversible, and intelligent thermal responses at a specific trigger temperature. Herein, the recent progress in thermally responsive polymers for overcoming the thermal runaway for high-safety ESDs is summarized. Six strategies are considered: phase change, sol-gel transitions, thermal melting, thermal polymerization, thermal dedoping, and thermal expansion. The working mechanisms of these thermoresponsive polymers are discussed in turn, with a focus on the synthesis, electrochemical performance, and thermal responses for each strategy. Finally, the internal and external safety design features for preventing thermal runaway in ESDs are explored, including the optimization direction in packaging materials, electrodes, electrolytes, current collectors and separators. Six strategies for overcoming thermal runaway in high-safety electrochemical storage devices: phase change, sol-gel transitions, thermal melting, thermal polymerization, thermal dedoping, and thermal expansion.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2qm01342h</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1071-1995</orcidid><orcidid>https://orcid.org/0000-0002-5816-7343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1537
ispartof Materials chemistry frontiers, 2023-04, Vol.7 (8), p.1562-159
issn 2052-1537
2052-1537
language eng
recordid cdi_crossref_primary_10_1039_D2QM01342H
source Royal Society Of Chemistry Journals 2008-
subjects Electrochemical analysis
Electrolytes
Microwave heating
Optimization
Polymers
Safety
Sol-gel processes
Thermal expansion
Thermal runaway
title Thermally responsive polymers for overcoming thermal runaway in high-safety electrochemical storage devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20responsive%20polymers%20for%20overcoming%20thermal%20runaway%20in%20high-safety%20electrochemical%20storage%20devices&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Chen,%20Shaoshan&rft.date=2023-04-11&rft.volume=7&rft.issue=8&rft.spage=1562&rft.epage=159&rft.pages=1562-159&rft.issn=2052-1537&rft.eissn=2052-1537&rft_id=info:doi/10.1039/d2qm01342h&rft_dat=%3Cproquest_cross%3E2798983067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798983067&rft_id=info:pmid/&rfr_iscdi=true