Construction of a nickel-rich LiNi 0.83 Co 0.11 Mn 0.06 O 2 cathode with high stability and excellent cycle performance through interface engineering

Nickel-rich cathodes of LiNi 0.83 Co 0.11 Mn 0.06 O 2 (NCM83) are receiving increased attention due to its high specific capacity and low cost. Nevertheless, the excess residual lithium, unsatisfactory cycle performance and poor thermal stability limit its further commercial application. Herein, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry frontiers 2023-01, Vol.7 (3), p.490-501
Hauptverfasser: Zhang, Shan, Zhou, Xiaolin, Li, Sihan, Feng, Ze, Fan, Xin, Sun, Dan, Wang, Haiyan, Tang, Yougen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 3
container_start_page 490
container_title Materials chemistry frontiers
container_volume 7
creator Zhang, Shan
Zhou, Xiaolin
Li, Sihan
Feng, Ze
Fan, Xin
Sun, Dan
Wang, Haiyan
Tang, Yougen
description Nickel-rich cathodes of LiNi 0.83 Co 0.11 Mn 0.06 O 2 (NCM83) are receiving increased attention due to its high specific capacity and low cost. Nevertheless, the excess residual lithium, unsatisfactory cycle performance and poor thermal stability limit its further commercial application. Herein, we proposed an effective strategy to improve the electrochemical properties of NCM83 by Li 4 Mn 5 O 12 coating. The uniform lithium-rich coatings of Li 4 Mn 5 O 12 are derived from the reaction between manganese( ii ) acetylacetonate and the alkaline lithium impurities, which can efficiently reduce the residual lithium, improve the interfacial Li-ion diffusion kinetics, and suppress the interfacial side reaction. As a result, the coated cathodes show excellent cycle stability and thermal stability. Typically, the Li 4 Mn 5 O 12 (LMO) coated sample of NCM83@LMO-2 displays a higher discharge capacity of 169.8 mA h g −1 at 1 C with 93.2% capacity retention after 100 cycles, which is much higher than the pristine NCM83 (139.9 mA h g −1 with 76.5% capacity retention). This work provides an in-depth understanding on how to improve the interfacial properties of Ni-rich materials and enhance the electrochemical performances, thereby facilitating the commercial application of high-energy-density lithium-ion batteries.
doi_str_mv 10.1039/D2QM00889K
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2QM00889K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D2QM00889K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76K-be72417e8097214cd5a80b068cd847ab6b9f71c3693f81da8d57d0fdaa1a5f583</originalsourceid><addsrcrecordid>eNpNkMtKAzEYhYMoWGo3PsG_Fqb-mXQmmaXUK20tQvdDJpdOdJqUTIr2QXxfRxR09R0OnLP4CLmkOKXIquvb_GWFKES1OCGjHIs8owXjp__yOZn0_SsiUs5zhnREPufB9ykeVHLBQ7AgwTv1ZrosOtXC0j07wKlgMA8DKYWVH4glrCEHJVMbtIF3l1po3baFPsnGdS4dQXoN5kOZrjM-gTqqzsDeRBviTnplILUxHIaF82lo5dAYv3XemOj89oKcWdn1ZvLLMdnc323mj9ly_fA0v1lmipeLrDE8n1FuBFY8pzOlCymwwVIoLWZcNmVTWU4VKytmBdVS6IJrtFpKKgtbCDYmVz-3Koa-j8bW--h2Mh5rivW30vpPKfsC4dRofw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of a nickel-rich LiNi 0.83 Co 0.11 Mn 0.06 O 2 cathode with high stability and excellent cycle performance through interface engineering</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Shan ; Zhou, Xiaolin ; Li, Sihan ; Feng, Ze ; Fan, Xin ; Sun, Dan ; Wang, Haiyan ; Tang, Yougen</creator><creatorcontrib>Zhang, Shan ; Zhou, Xiaolin ; Li, Sihan ; Feng, Ze ; Fan, Xin ; Sun, Dan ; Wang, Haiyan ; Tang, Yougen</creatorcontrib><description>Nickel-rich cathodes of LiNi 0.83 Co 0.11 Mn 0.06 O 2 (NCM83) are receiving increased attention due to its high specific capacity and low cost. Nevertheless, the excess residual lithium, unsatisfactory cycle performance and poor thermal stability limit its further commercial application. Herein, we proposed an effective strategy to improve the electrochemical properties of NCM83 by Li 4 Mn 5 O 12 coating. The uniform lithium-rich coatings of Li 4 Mn 5 O 12 are derived from the reaction between manganese( ii ) acetylacetonate and the alkaline lithium impurities, which can efficiently reduce the residual lithium, improve the interfacial Li-ion diffusion kinetics, and suppress the interfacial side reaction. As a result, the coated cathodes show excellent cycle stability and thermal stability. Typically, the Li 4 Mn 5 O 12 (LMO) coated sample of NCM83@LMO-2 displays a higher discharge capacity of 169.8 mA h g −1 at 1 C with 93.2% capacity retention after 100 cycles, which is much higher than the pristine NCM83 (139.9 mA h g −1 with 76.5% capacity retention). This work provides an in-depth understanding on how to improve the interfacial properties of Ni-rich materials and enhance the electrochemical performances, thereby facilitating the commercial application of high-energy-density lithium-ion batteries.</description><identifier>ISSN: 2052-1537</identifier><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/D2QM00889K</identifier><language>eng</language><ispartof>Materials chemistry frontiers, 2023-01, Vol.7 (3), p.490-501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76K-be72417e8097214cd5a80b068cd847ab6b9f71c3693f81da8d57d0fdaa1a5f583</citedby><cites>FETCH-LOGICAL-c76K-be72417e8097214cd5a80b068cd847ab6b9f71c3693f81da8d57d0fdaa1a5f583</cites><orcidid>0000-0003-4987-6006 ; 0000-0003-0783-3366 ; 0000-0002-7150-7947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Shan</creatorcontrib><creatorcontrib>Zhou, Xiaolin</creatorcontrib><creatorcontrib>Li, Sihan</creatorcontrib><creatorcontrib>Feng, Ze</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><title>Construction of a nickel-rich LiNi 0.83 Co 0.11 Mn 0.06 O 2 cathode with high stability and excellent cycle performance through interface engineering</title><title>Materials chemistry frontiers</title><description>Nickel-rich cathodes of LiNi 0.83 Co 0.11 Mn 0.06 O 2 (NCM83) are receiving increased attention due to its high specific capacity and low cost. Nevertheless, the excess residual lithium, unsatisfactory cycle performance and poor thermal stability limit its further commercial application. Herein, we proposed an effective strategy to improve the electrochemical properties of NCM83 by Li 4 Mn 5 O 12 coating. The uniform lithium-rich coatings of Li 4 Mn 5 O 12 are derived from the reaction between manganese( ii ) acetylacetonate and the alkaline lithium impurities, which can efficiently reduce the residual lithium, improve the interfacial Li-ion diffusion kinetics, and suppress the interfacial side reaction. As a result, the coated cathodes show excellent cycle stability and thermal stability. Typically, the Li 4 Mn 5 O 12 (LMO) coated sample of NCM83@LMO-2 displays a higher discharge capacity of 169.8 mA h g −1 at 1 C with 93.2% capacity retention after 100 cycles, which is much higher than the pristine NCM83 (139.9 mA h g −1 with 76.5% capacity retention). This work provides an in-depth understanding on how to improve the interfacial properties of Ni-rich materials and enhance the electrochemical performances, thereby facilitating the commercial application of high-energy-density lithium-ion batteries.</description><issn>2052-1537</issn><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEYhYMoWGo3PsG_Fqb-mXQmmaXUK20tQvdDJpdOdJqUTIr2QXxfRxR09R0OnLP4CLmkOKXIquvb_GWFKES1OCGjHIs8owXjp__yOZn0_SsiUs5zhnREPufB9ykeVHLBQ7AgwTv1ZrosOtXC0j07wKlgMA8DKYWVH4glrCEHJVMbtIF3l1po3baFPsnGdS4dQXoN5kOZrjM-gTqqzsDeRBviTnplILUxHIaF82lo5dAYv3XemOj89oKcWdn1ZvLLMdnc323mj9ly_fA0v1lmipeLrDE8n1FuBFY8pzOlCymwwVIoLWZcNmVTWU4VKytmBdVS6IJrtFpKKgtbCDYmVz-3Koa-j8bW--h2Mh5rivW30vpPKfsC4dRofw</recordid><startdate>20230130</startdate><enddate>20230130</enddate><creator>Zhang, Shan</creator><creator>Zhou, Xiaolin</creator><creator>Li, Sihan</creator><creator>Feng, Ze</creator><creator>Fan, Xin</creator><creator>Sun, Dan</creator><creator>Wang, Haiyan</creator><creator>Tang, Yougen</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4987-6006</orcidid><orcidid>https://orcid.org/0000-0003-0783-3366</orcidid><orcidid>https://orcid.org/0000-0002-7150-7947</orcidid></search><sort><creationdate>20230130</creationdate><title>Construction of a nickel-rich LiNi 0.83 Co 0.11 Mn 0.06 O 2 cathode with high stability and excellent cycle performance through interface engineering</title><author>Zhang, Shan ; Zhou, Xiaolin ; Li, Sihan ; Feng, Ze ; Fan, Xin ; Sun, Dan ; Wang, Haiyan ; Tang, Yougen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76K-be72417e8097214cd5a80b068cd847ab6b9f71c3693f81da8d57d0fdaa1a5f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shan</creatorcontrib><creatorcontrib>Zhou, Xiaolin</creatorcontrib><creatorcontrib>Li, Sihan</creatorcontrib><creatorcontrib>Feng, Ze</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Tang, Yougen</creatorcontrib><collection>CrossRef</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shan</au><au>Zhou, Xiaolin</au><au>Li, Sihan</au><au>Feng, Ze</au><au>Fan, Xin</au><au>Sun, Dan</au><au>Wang, Haiyan</au><au>Tang, Yougen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a nickel-rich LiNi 0.83 Co 0.11 Mn 0.06 O 2 cathode with high stability and excellent cycle performance through interface engineering</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2023-01-30</date><risdate>2023</risdate><volume>7</volume><issue>3</issue><spage>490</spage><epage>501</epage><pages>490-501</pages><issn>2052-1537</issn><eissn>2052-1537</eissn><abstract>Nickel-rich cathodes of LiNi 0.83 Co 0.11 Mn 0.06 O 2 (NCM83) are receiving increased attention due to its high specific capacity and low cost. Nevertheless, the excess residual lithium, unsatisfactory cycle performance and poor thermal stability limit its further commercial application. Herein, we proposed an effective strategy to improve the electrochemical properties of NCM83 by Li 4 Mn 5 O 12 coating. The uniform lithium-rich coatings of Li 4 Mn 5 O 12 are derived from the reaction between manganese( ii ) acetylacetonate and the alkaline lithium impurities, which can efficiently reduce the residual lithium, improve the interfacial Li-ion diffusion kinetics, and suppress the interfacial side reaction. As a result, the coated cathodes show excellent cycle stability and thermal stability. Typically, the Li 4 Mn 5 O 12 (LMO) coated sample of NCM83@LMO-2 displays a higher discharge capacity of 169.8 mA h g −1 at 1 C with 93.2% capacity retention after 100 cycles, which is much higher than the pristine NCM83 (139.9 mA h g −1 with 76.5% capacity retention). This work provides an in-depth understanding on how to improve the interfacial properties of Ni-rich materials and enhance the electrochemical performances, thereby facilitating the commercial application of high-energy-density lithium-ion batteries.</abstract><doi>10.1039/D2QM00889K</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4987-6006</orcidid><orcidid>https://orcid.org/0000-0003-0783-3366</orcidid><orcidid>https://orcid.org/0000-0002-7150-7947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1537
ispartof Materials chemistry frontiers, 2023-01, Vol.7 (3), p.490-501
issn 2052-1537
2052-1537
language eng
recordid cdi_crossref_primary_10_1039_D2QM00889K
source Royal Society Of Chemistry Journals 2008-
title Construction of a nickel-rich LiNi 0.83 Co 0.11 Mn 0.06 O 2 cathode with high stability and excellent cycle performance through interface engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20nickel-rich%20LiNi%200.83%20Co%200.11%20Mn%200.06%20O%202%20cathode%20with%20high%20stability%20and%20excellent%20cycle%20performance%20through%20interface%20engineering&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Zhang,%20Shan&rft.date=2023-01-30&rft.volume=7&rft.issue=3&rft.spage=490&rft.epage=501&rft.pages=490-501&rft.issn=2052-1537&rft.eissn=2052-1537&rft_id=info:doi/10.1039/D2QM00889K&rft_dat=%3Ccrossref%3E10_1039_D2QM00889K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true