Light induced ammonia synthesis by crystalline polyoxometalate-based hybrid frameworks coupled with the Sv-1T MoS 2 cocatalyst

The exploration of efficient and stable composite-materials as nitrogen reduction photocatalysts featuring wide spectrum absorption and nitrogen fixation active sites has become specifically significant. In this work, a series of mixed-addendum PMoV-based organic–inorganic hybrid materials coupled w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2022-07, Vol.9 (15), p.3828-3838
Hauptverfasser: Li, Fengrui, Liu, Hongru, Chen, Weichao, Su, Ying, Chen, Weilin, Zhi, Jingjing, Li, Yangguang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3838
container_issue 15
container_start_page 3828
container_title Inorganic chemistry frontiers
container_volume 9
creator Li, Fengrui
Liu, Hongru
Chen, Weichao
Su, Ying
Chen, Weilin
Zhi, Jingjing
Li, Yangguang
description The exploration of efficient and stable composite-materials as nitrogen reduction photocatalysts featuring wide spectrum absorption and nitrogen fixation active sites has become specifically significant. In this work, a series of mixed-addendum PMoV-based organic–inorganic hybrid materials coupled with rich sulfur vacancy 1T MoS 2 (Sv-1T MoS 2 ) through a hydrothermal growth strategy are presented towards green NH 3 production. The intervalence electron transfer of the reduced polyoxometalates, as well as the construction of a Ni-trinuclear cluster-based framework, is responsible for the capable light-harvesting performance of the well-defined PMo 8 V 6 –Ni crystalline material, and Sv-1T MoS 2 which serves as a cocatalyst can facilitate electron–hole separation of the light absorbers, which further promotes the ammonia production capacity of the composite materials. As expected, the ammonia generation rate of Sv-1T MoS 2 /PMo 8 V 6 –Ni (80.6 μmol h −1 g −1 ) is much higher than that of either PMo 8 V 6 –Ni (9.7 μmol h −1 g −1 ) or Sv-1T MoS 2 (8.6 μmol h −1 g −1 ) component. Such a noble-metal-free system therefore shows an apparent quantum efficiency (AQE) of 0.368% at 550 nm. The “working-in-tandem” mechanism established by sulfur vacancies as nitrogen active sites and polyoxometalate crystalline photosensitizers are extremely crucial for facilitating N 2 chemisorption and NH 3 formation. This work provides a fresh perspective for the rational design of photocatalyst composite materials with energetic electrons towards efficient nitrogen fixation.
doi_str_mv 10.1039/D2QI01003H
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2QI01003H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D2QI01003H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76H-9581161cfde73c83f02c3fcbbf356d40eac19cf492459a701462374ca7b7d6de3</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWGov_oKchdX3Tfaje5T60UJFpL0v2Xy40d1NSbbWvfS3G1HQ0wwzzHMYQi4RrhF4eXPHXlaAAHx5QiYMMpZglvHTf_6czEJ4AwDEFDCHCTmu7WszUNurvdSKiq5zvRU0jP3Q6GADrUcq_RgG0ba213Tn2tF9uk7HQAw6qUWIs2asvVXUeNHpg_PvgUq337WxOdihoRFFNx8JbumT21AWSyniPlIvyJkRbdCzX52S7cP9drFM1s-Pq8XtOpFFvkzKbI6YozRKF1zOuQEmuZF1bXiWqxS0kFhKk5YszUpRAKY540UqRVEXKleaT8nVD1Z6F4LXptp52wk_VgjV93fV33f8C1zkY4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Light induced ammonia synthesis by crystalline polyoxometalate-based hybrid frameworks coupled with the Sv-1T MoS 2 cocatalyst</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Fengrui ; Liu, Hongru ; Chen, Weichao ; Su, Ying ; Chen, Weilin ; Zhi, Jingjing ; Li, Yangguang</creator><creatorcontrib>Li, Fengrui ; Liu, Hongru ; Chen, Weichao ; Su, Ying ; Chen, Weilin ; Zhi, Jingjing ; Li, Yangguang</creatorcontrib><description>The exploration of efficient and stable composite-materials as nitrogen reduction photocatalysts featuring wide spectrum absorption and nitrogen fixation active sites has become specifically significant. In this work, a series of mixed-addendum PMoV-based organic–inorganic hybrid materials coupled with rich sulfur vacancy 1T MoS 2 (Sv-1T MoS 2 ) through a hydrothermal growth strategy are presented towards green NH 3 production. The intervalence electron transfer of the reduced polyoxometalates, as well as the construction of a Ni-trinuclear cluster-based framework, is responsible for the capable light-harvesting performance of the well-defined PMo 8 V 6 –Ni crystalline material, and Sv-1T MoS 2 which serves as a cocatalyst can facilitate electron–hole separation of the light absorbers, which further promotes the ammonia production capacity of the composite materials. As expected, the ammonia generation rate of Sv-1T MoS 2 /PMo 8 V 6 –Ni (80.6 μmol h −1 g −1 ) is much higher than that of either PMo 8 V 6 –Ni (9.7 μmol h −1 g −1 ) or Sv-1T MoS 2 (8.6 μmol h −1 g −1 ) component. Such a noble-metal-free system therefore shows an apparent quantum efficiency (AQE) of 0.368% at 550 nm. The “working-in-tandem” mechanism established by sulfur vacancies as nitrogen active sites and polyoxometalate crystalline photosensitizers are extremely crucial for facilitating N 2 chemisorption and NH 3 formation. This work provides a fresh perspective for the rational design of photocatalyst composite materials with energetic electrons towards efficient nitrogen fixation.</description><identifier>ISSN: 2052-1553</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/D2QI01003H</identifier><language>eng</language><ispartof>Inorganic chemistry frontiers, 2022-07, Vol.9 (15), p.3828-3838</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76H-9581161cfde73c83f02c3fcbbf356d40eac19cf492459a701462374ca7b7d6de3</citedby><cites>FETCH-LOGICAL-c76H-9581161cfde73c83f02c3fcbbf356d40eac19cf492459a701462374ca7b7d6de3</cites><orcidid>0000-0002-4279-3534 ; 0000-0003-4701-690X ; 0000-0002-9696-8192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Fengrui</creatorcontrib><creatorcontrib>Liu, Hongru</creatorcontrib><creatorcontrib>Chen, Weichao</creatorcontrib><creatorcontrib>Su, Ying</creatorcontrib><creatorcontrib>Chen, Weilin</creatorcontrib><creatorcontrib>Zhi, Jingjing</creatorcontrib><creatorcontrib>Li, Yangguang</creatorcontrib><title>Light induced ammonia synthesis by crystalline polyoxometalate-based hybrid frameworks coupled with the Sv-1T MoS 2 cocatalyst</title><title>Inorganic chemistry frontiers</title><description>The exploration of efficient and stable composite-materials as nitrogen reduction photocatalysts featuring wide spectrum absorption and nitrogen fixation active sites has become specifically significant. In this work, a series of mixed-addendum PMoV-based organic–inorganic hybrid materials coupled with rich sulfur vacancy 1T MoS 2 (Sv-1T MoS 2 ) through a hydrothermal growth strategy are presented towards green NH 3 production. The intervalence electron transfer of the reduced polyoxometalates, as well as the construction of a Ni-trinuclear cluster-based framework, is responsible for the capable light-harvesting performance of the well-defined PMo 8 V 6 –Ni crystalline material, and Sv-1T MoS 2 which serves as a cocatalyst can facilitate electron–hole separation of the light absorbers, which further promotes the ammonia production capacity of the composite materials. As expected, the ammonia generation rate of Sv-1T MoS 2 /PMo 8 V 6 –Ni (80.6 μmol h −1 g −1 ) is much higher than that of either PMo 8 V 6 –Ni (9.7 μmol h −1 g −1 ) or Sv-1T MoS 2 (8.6 μmol h −1 g −1 ) component. Such a noble-metal-free system therefore shows an apparent quantum efficiency (AQE) of 0.368% at 550 nm. The “working-in-tandem” mechanism established by sulfur vacancies as nitrogen active sites and polyoxometalate crystalline photosensitizers are extremely crucial for facilitating N 2 chemisorption and NH 3 formation. This work provides a fresh perspective for the rational design of photocatalyst composite materials with energetic electrons towards efficient nitrogen fixation.</description><issn>2052-1553</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEYhIMoWGov_oKchdX3Tfaje5T60UJFpL0v2Xy40d1NSbbWvfS3G1HQ0wwzzHMYQi4RrhF4eXPHXlaAAHx5QiYMMpZglvHTf_6czEJ4AwDEFDCHCTmu7WszUNurvdSKiq5zvRU0jP3Q6GADrUcq_RgG0ba213Tn2tF9uk7HQAw6qUWIs2asvVXUeNHpg_PvgUq337WxOdihoRFFNx8JbumT21AWSyniPlIvyJkRbdCzX52S7cP9drFM1s-Pq8XtOpFFvkzKbI6YozRKF1zOuQEmuZF1bXiWqxS0kFhKk5YszUpRAKY540UqRVEXKleaT8nVD1Z6F4LXptp52wk_VgjV93fV33f8C1zkY4A</recordid><startdate>20220726</startdate><enddate>20220726</enddate><creator>Li, Fengrui</creator><creator>Liu, Hongru</creator><creator>Chen, Weichao</creator><creator>Su, Ying</creator><creator>Chen, Weilin</creator><creator>Zhi, Jingjing</creator><creator>Li, Yangguang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4279-3534</orcidid><orcidid>https://orcid.org/0000-0003-4701-690X</orcidid><orcidid>https://orcid.org/0000-0002-9696-8192</orcidid></search><sort><creationdate>20220726</creationdate><title>Light induced ammonia synthesis by crystalline polyoxometalate-based hybrid frameworks coupled with the Sv-1T MoS 2 cocatalyst</title><author>Li, Fengrui ; Liu, Hongru ; Chen, Weichao ; Su, Ying ; Chen, Weilin ; Zhi, Jingjing ; Li, Yangguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76H-9581161cfde73c83f02c3fcbbf356d40eac19cf492459a701462374ca7b7d6de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fengrui</creatorcontrib><creatorcontrib>Liu, Hongru</creatorcontrib><creatorcontrib>Chen, Weichao</creatorcontrib><creatorcontrib>Su, Ying</creatorcontrib><creatorcontrib>Chen, Weilin</creatorcontrib><creatorcontrib>Zhi, Jingjing</creatorcontrib><creatorcontrib>Li, Yangguang</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fengrui</au><au>Liu, Hongru</au><au>Chen, Weichao</au><au>Su, Ying</au><au>Chen, Weilin</au><au>Zhi, Jingjing</au><au>Li, Yangguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light induced ammonia synthesis by crystalline polyoxometalate-based hybrid frameworks coupled with the Sv-1T MoS 2 cocatalyst</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2022-07-26</date><risdate>2022</risdate><volume>9</volume><issue>15</issue><spage>3828</spage><epage>3838</epage><pages>3828-3838</pages><issn>2052-1553</issn><eissn>2052-1553</eissn><abstract>The exploration of efficient and stable composite-materials as nitrogen reduction photocatalysts featuring wide spectrum absorption and nitrogen fixation active sites has become specifically significant. In this work, a series of mixed-addendum PMoV-based organic–inorganic hybrid materials coupled with rich sulfur vacancy 1T MoS 2 (Sv-1T MoS 2 ) through a hydrothermal growth strategy are presented towards green NH 3 production. The intervalence electron transfer of the reduced polyoxometalates, as well as the construction of a Ni-trinuclear cluster-based framework, is responsible for the capable light-harvesting performance of the well-defined PMo 8 V 6 –Ni crystalline material, and Sv-1T MoS 2 which serves as a cocatalyst can facilitate electron–hole separation of the light absorbers, which further promotes the ammonia production capacity of the composite materials. As expected, the ammonia generation rate of Sv-1T MoS 2 /PMo 8 V 6 –Ni (80.6 μmol h −1 g −1 ) is much higher than that of either PMo 8 V 6 –Ni (9.7 μmol h −1 g −1 ) or Sv-1T MoS 2 (8.6 μmol h −1 g −1 ) component. Such a noble-metal-free system therefore shows an apparent quantum efficiency (AQE) of 0.368% at 550 nm. The “working-in-tandem” mechanism established by sulfur vacancies as nitrogen active sites and polyoxometalate crystalline photosensitizers are extremely crucial for facilitating N 2 chemisorption and NH 3 formation. This work provides a fresh perspective for the rational design of photocatalyst composite materials with energetic electrons towards efficient nitrogen fixation.</abstract><doi>10.1039/D2QI01003H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4279-3534</orcidid><orcidid>https://orcid.org/0000-0003-4701-690X</orcidid><orcidid>https://orcid.org/0000-0002-9696-8192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1553
ispartof Inorganic chemistry frontiers, 2022-07, Vol.9 (15), p.3828-3838
issn 2052-1553
2052-1553
language eng
recordid cdi_crossref_primary_10_1039_D2QI01003H
source Royal Society Of Chemistry Journals 2008-
title Light induced ammonia synthesis by crystalline polyoxometalate-based hybrid frameworks coupled with the Sv-1T MoS 2 cocatalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20induced%20ammonia%20synthesis%20by%20crystalline%20polyoxometalate-based%20hybrid%20frameworks%20coupled%20with%20the%20Sv-1T%20MoS%202%20cocatalyst&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Li,%20Fengrui&rft.date=2022-07-26&rft.volume=9&rft.issue=15&rft.spage=3828&rft.epage=3838&rft.pages=3828-3838&rft.issn=2052-1553&rft.eissn=2052-1553&rft_id=info:doi/10.1039/D2QI01003H&rft_dat=%3Ccrossref%3E10_1039_D2QI01003H%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true