Controlled synthesis of a porous single-atomic Fe-N-C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction
Single-atomic Fe-N x sites have been widely accepted as active sites for the oxygen reduction reaction (ORR), while the roles played by other symbiotic Fe moieties (such as Fe clusters) are still contentious. Synthesis of Fe-N-C catalysts possessing both Fe-N x sites and Fe clusters and investigatio...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry frontiers 2022-08, Vol.9 (16), p.411-411 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 16 |
container_start_page | 411 |
container_title | Inorganic chemistry frontiers |
container_volume | 9 |
creator | Fan, Lili Zhang, Ling Li, Xuting Mei, Hao Li, Mengfei Liu, Zhanning Kang, Zixi Tuo, Yongxiao Wang, Rongming Sun, Daofeng |
description | Single-atomic Fe-N
x
sites have been widely accepted as active sites for the oxygen reduction reaction (ORR), while the roles played by other symbiotic Fe moieties (such as Fe clusters) are still contentious. Synthesis of Fe-N-C catalysts possessing both Fe-N
x
sites and Fe clusters and investigation of their catalytic mechanism are essential but challenging. Herein, the controlled synthesis of a model catalyst is successfully achieved using Fe(II)-phenanthroline (Phen) complexes as the only precursor. Through a solid-phase preparation process, Fe-Phen complexes are synthesized on the surface of silica that is used as a hard template for introducing porosity into the carbon structure. The high density of Fe centers facilitates the simultaneous generation of single atomic Fe-N
x
sites and Fe clusters, severe aggregation of which is impeded by the silica template. The as-prepared catalyst delivers an efficient ORR performance in an alkaline environment. Combining with computational analysis, the synergistic catalytic mechanism between the Fe-N
x
sites and Fe clusters is revealed that the neighboring Fe clusters can increase the adsorption energy of OOH* on the Fe atom of Fe-N
x
sites and lower the energy barrier for the formation of the OOH intermediate, thus accelerating the catalytic process. This study provides insights into the future design and synthesis of efficient Fe-N-C catalysts.
A porous single-atomic Fe-N-C catalyst is prepared with the presence of Fe nanoclusters to increase the adsorption energy of OOH* on the single Fe atom and lower the energy barrier for OOH formation, thus improving the ORR activity. |
doi_str_mv | 10.1039/d2qi00876a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2QI00876A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699986869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-ec4a80a707e6178c41dc6ae98de0658621067c0c06023c8365ee375341ed81b83</originalsourceid><addsrcrecordid>eNpNkUFLw0AQhYMoWGov3oUFb0J0Nmk2m2OpVgtFEfQc1s2k3ZLutjsbND_Df2xqRT3NY_jmDbwXReccrjmkxU2V7AyAzIU6igYJZEnMsyw9_qdPoxHRGgA4HwMXMIg-p84G75oGK0adDSskQ8zVTLGt864lRsYuG4xVcBuj2Qzjx3jKtAqq6SiwdxNW_ZJZZZ1uWgroiSnae6FfGgr9zQHeKzIBidXOM6xrow3awNxHt0TLPFatDsbZs-ikVg3h6GcOo9fZ3cv0IV483c-nk0WsE8lDjHqsJKgcchQ8l3rMKy0UFrJCEJkUCQeRa9AgIEm1TEWGmOZZOuZYSf4m02F0efDderdrkUK5dq23_csyEUVRSCFF0VNXB0p7R-SxLrfebJTvSg7lPvXyNnmef6c-6eGLA-xJ_3J_raRfR2eAjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699986869</pqid></control><display><type>article</type><title>Controlled synthesis of a porous single-atomic Fe-N-C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction</title><source>Royal Society Of Chemistry Journals</source><creator>Fan, Lili ; Zhang, Ling ; Li, Xuting ; Mei, Hao ; Li, Mengfei ; Liu, Zhanning ; Kang, Zixi ; Tuo, Yongxiao ; Wang, Rongming ; Sun, Daofeng</creator><creatorcontrib>Fan, Lili ; Zhang, Ling ; Li, Xuting ; Mei, Hao ; Li, Mengfei ; Liu, Zhanning ; Kang, Zixi ; Tuo, Yongxiao ; Wang, Rongming ; Sun, Daofeng</creatorcontrib><description>Single-atomic Fe-N
x
sites have been widely accepted as active sites for the oxygen reduction reaction (ORR), while the roles played by other symbiotic Fe moieties (such as Fe clusters) are still contentious. Synthesis of Fe-N-C catalysts possessing both Fe-N
x
sites and Fe clusters and investigation of their catalytic mechanism are essential but challenging. Herein, the controlled synthesis of a model catalyst is successfully achieved using Fe(II)-phenanthroline (Phen) complexes as the only precursor. Through a solid-phase preparation process, Fe-Phen complexes are synthesized on the surface of silica that is used as a hard template for introducing porosity into the carbon structure. The high density of Fe centers facilitates the simultaneous generation of single atomic Fe-N
x
sites and Fe clusters, severe aggregation of which is impeded by the silica template. The as-prepared catalyst delivers an efficient ORR performance in an alkaline environment. Combining with computational analysis, the synergistic catalytic mechanism between the Fe-N
x
sites and Fe clusters is revealed that the neighboring Fe clusters can increase the adsorption energy of OOH* on the Fe atom of Fe-N
x
sites and lower the energy barrier for the formation of the OOH intermediate, thus accelerating the catalytic process. This study provides insights into the future design and synthesis of efficient Fe-N-C catalysts.
A porous single-atomic Fe-N-C catalyst is prepared with the presence of Fe nanoclusters to increase the adsorption energy of OOH* on the single Fe atom and lower the energy barrier for OOH formation, thus improving the ORR activity.</description><identifier>ISSN: 2052-1553</identifier><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d2qi00876a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical reduction ; Chemical synthesis ; Clusters ; Inorganic chemistry ; Nanoclusters ; Oxygen reduction reactions ; Silicon dioxide ; Solid phases</subject><ispartof>Inorganic chemistry frontiers, 2022-08, Vol.9 (16), p.411-411</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-ec4a80a707e6178c41dc6ae98de0658621067c0c06023c8365ee375341ed81b83</citedby><cites>FETCH-LOGICAL-c281t-ec4a80a707e6178c41dc6ae98de0658621067c0c06023c8365ee375341ed81b83</cites><orcidid>0000-0002-3399-0448 ; 0000-0002-7456-2722 ; 0000-0001-7997-805X ; 0000-0003-3184-1841 ; 0000-0002-5445-541X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fan, Lili</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Li, Xuting</creatorcontrib><creatorcontrib>Mei, Hao</creatorcontrib><creatorcontrib>Li, Mengfei</creatorcontrib><creatorcontrib>Liu, Zhanning</creatorcontrib><creatorcontrib>Kang, Zixi</creatorcontrib><creatorcontrib>Tuo, Yongxiao</creatorcontrib><creatorcontrib>Wang, Rongming</creatorcontrib><creatorcontrib>Sun, Daofeng</creatorcontrib><title>Controlled synthesis of a porous single-atomic Fe-N-C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction</title><title>Inorganic chemistry frontiers</title><description>Single-atomic Fe-N
x
sites have been widely accepted as active sites for the oxygen reduction reaction (ORR), while the roles played by other symbiotic Fe moieties (such as Fe clusters) are still contentious. Synthesis of Fe-N-C catalysts possessing both Fe-N
x
sites and Fe clusters and investigation of their catalytic mechanism are essential but challenging. Herein, the controlled synthesis of a model catalyst is successfully achieved using Fe(II)-phenanthroline (Phen) complexes as the only precursor. Through a solid-phase preparation process, Fe-Phen complexes are synthesized on the surface of silica that is used as a hard template for introducing porosity into the carbon structure. The high density of Fe centers facilitates the simultaneous generation of single atomic Fe-N
x
sites and Fe clusters, severe aggregation of which is impeded by the silica template. The as-prepared catalyst delivers an efficient ORR performance in an alkaline environment. Combining with computational analysis, the synergistic catalytic mechanism between the Fe-N
x
sites and Fe clusters is revealed that the neighboring Fe clusters can increase the adsorption energy of OOH* on the Fe atom of Fe-N
x
sites and lower the energy barrier for the formation of the OOH intermediate, thus accelerating the catalytic process. This study provides insights into the future design and synthesis of efficient Fe-N-C catalysts.
A porous single-atomic Fe-N-C catalyst is prepared with the presence of Fe nanoclusters to increase the adsorption energy of OOH* on the single Fe atom and lower the energy barrier for OOH formation, thus improving the ORR activity.</description><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Clusters</subject><subject>Inorganic chemistry</subject><subject>Nanoclusters</subject><subject>Oxygen reduction reactions</subject><subject>Silicon dioxide</subject><subject>Solid phases</subject><issn>2052-1553</issn><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkUFLw0AQhYMoWGov3oUFb0J0Nmk2m2OpVgtFEfQc1s2k3ZLutjsbND_Df2xqRT3NY_jmDbwXReccrjmkxU2V7AyAzIU6igYJZEnMsyw9_qdPoxHRGgA4HwMXMIg-p84G75oGK0adDSskQ8zVTLGt864lRsYuG4xVcBuj2Qzjx3jKtAqq6SiwdxNW_ZJZZZ1uWgroiSnae6FfGgr9zQHeKzIBidXOM6xrow3awNxHt0TLPFatDsbZs-ikVg3h6GcOo9fZ3cv0IV483c-nk0WsE8lDjHqsJKgcchQ8l3rMKy0UFrJCEJkUCQeRa9AgIEm1TEWGmOZZOuZYSf4m02F0efDderdrkUK5dq23_csyEUVRSCFF0VNXB0p7R-SxLrfebJTvSg7lPvXyNnmef6c-6eGLA-xJ_3J_raRfR2eAjw</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>Fan, Lili</creator><creator>Zhang, Ling</creator><creator>Li, Xuting</creator><creator>Mei, Hao</creator><creator>Li, Mengfei</creator><creator>Liu, Zhanning</creator><creator>Kang, Zixi</creator><creator>Tuo, Yongxiao</creator><creator>Wang, Rongming</creator><creator>Sun, Daofeng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3399-0448</orcidid><orcidid>https://orcid.org/0000-0002-7456-2722</orcidid><orcidid>https://orcid.org/0000-0001-7997-805X</orcidid><orcidid>https://orcid.org/0000-0003-3184-1841</orcidid><orcidid>https://orcid.org/0000-0002-5445-541X</orcidid></search><sort><creationdate>20220809</creationdate><title>Controlled synthesis of a porous single-atomic Fe-N-C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction</title><author>Fan, Lili ; Zhang, Ling ; Li, Xuting ; Mei, Hao ; Li, Mengfei ; Liu, Zhanning ; Kang, Zixi ; Tuo, Yongxiao ; Wang, Rongming ; Sun, Daofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-ec4a80a707e6178c41dc6ae98de0658621067c0c06023c8365ee375341ed81b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Clusters</topic><topic>Inorganic chemistry</topic><topic>Nanoclusters</topic><topic>Oxygen reduction reactions</topic><topic>Silicon dioxide</topic><topic>Solid phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Lili</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Li, Xuting</creatorcontrib><creatorcontrib>Mei, Hao</creatorcontrib><creatorcontrib>Li, Mengfei</creatorcontrib><creatorcontrib>Liu, Zhanning</creatorcontrib><creatorcontrib>Kang, Zixi</creatorcontrib><creatorcontrib>Tuo, Yongxiao</creatorcontrib><creatorcontrib>Wang, Rongming</creatorcontrib><creatorcontrib>Sun, Daofeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Lili</au><au>Zhang, Ling</au><au>Li, Xuting</au><au>Mei, Hao</au><au>Li, Mengfei</au><au>Liu, Zhanning</au><au>Kang, Zixi</au><au>Tuo, Yongxiao</au><au>Wang, Rongming</au><au>Sun, Daofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled synthesis of a porous single-atomic Fe-N-C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2022-08-09</date><risdate>2022</risdate><volume>9</volume><issue>16</issue><spage>411</spage><epage>411</epage><pages>411-411</pages><issn>2052-1553</issn><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Single-atomic Fe-N
x
sites have been widely accepted as active sites for the oxygen reduction reaction (ORR), while the roles played by other symbiotic Fe moieties (such as Fe clusters) are still contentious. Synthesis of Fe-N-C catalysts possessing both Fe-N
x
sites and Fe clusters and investigation of their catalytic mechanism are essential but challenging. Herein, the controlled synthesis of a model catalyst is successfully achieved using Fe(II)-phenanthroline (Phen) complexes as the only precursor. Through a solid-phase preparation process, Fe-Phen complexes are synthesized on the surface of silica that is used as a hard template for introducing porosity into the carbon structure. The high density of Fe centers facilitates the simultaneous generation of single atomic Fe-N
x
sites and Fe clusters, severe aggregation of which is impeded by the silica template. The as-prepared catalyst delivers an efficient ORR performance in an alkaline environment. Combining with computational analysis, the synergistic catalytic mechanism between the Fe-N
x
sites and Fe clusters is revealed that the neighboring Fe clusters can increase the adsorption energy of OOH* on the Fe atom of Fe-N
x
sites and lower the energy barrier for the formation of the OOH intermediate, thus accelerating the catalytic process. This study provides insights into the future design and synthesis of efficient Fe-N-C catalysts.
A porous single-atomic Fe-N-C catalyst is prepared with the presence of Fe nanoclusters to increase the adsorption energy of OOH* on the single Fe atom and lower the energy barrier for OOH formation, thus improving the ORR activity.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2qi00876a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3399-0448</orcidid><orcidid>https://orcid.org/0000-0002-7456-2722</orcidid><orcidid>https://orcid.org/0000-0001-7997-805X</orcidid><orcidid>https://orcid.org/0000-0003-3184-1841</orcidid><orcidid>https://orcid.org/0000-0002-5445-541X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1553 |
ispartof | Inorganic chemistry frontiers, 2022-08, Vol.9 (16), p.411-411 |
issn | 2052-1553 2052-1545 2052-1553 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2QI00876A |
source | Royal Society Of Chemistry Journals |
subjects | Catalysts Chemical reduction Chemical synthesis Clusters Inorganic chemistry Nanoclusters Oxygen reduction reactions Silicon dioxide Solid phases |
title | Controlled synthesis of a porous single-atomic Fe-N-C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20synthesis%20of%20a%20porous%20single-atomic%20Fe-N-C%20catalyst%20with%20Fe%20nanoclusters%20as%20synergistic%20catalytic%20sites%20for%20efficient%20oxygen%20reduction&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Fan,%20Lili&rft.date=2022-08-09&rft.volume=9&rft.issue=16&rft.spage=411&rft.epage=411&rft.pages=411-411&rft.issn=2052-1553&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d2qi00876a&rft_dat=%3Cproquest_cross%3E2699986869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699986869&rft_id=info:pmid/&rfr_iscdi=true |