Composite hydrogels of bacterial cellulose and an ethylene-vinyl alcohol copolymer with tunable morphological anisotropy and mechanical properties

Anisotropic hydrogels that show a direction-dependent structure and properties have been produced and attracted attention in bio-mimicking, tissue engineering and bio-separation. Herein, bacterial cellulose (BC)-ethylene-vinyl alcohol copolymer (EVOH) composites have been prepared by precipitating E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials advances 2022-06, Vol.3 (12), p.5138-515
Hauptverfasser: Takawa, Shun, Sugawara, Akihide, Asoh, Taka-Aki, Nandi, Mahasweta, Uyama, Hiroshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 12
container_start_page 5138
container_title Materials advances
container_volume 3
creator Takawa, Shun
Sugawara, Akihide
Asoh, Taka-Aki
Nandi, Mahasweta
Uyama, Hiroshi
description Anisotropic hydrogels that show a direction-dependent structure and properties have been produced and attracted attention in bio-mimicking, tissue engineering and bio-separation. Herein, bacterial cellulose (BC)-ethylene-vinyl alcohol copolymer (EVOH) composites have been prepared by precipitating EVOH within solvent-substituted BC hydrogels via thermally induced phase separation. The internal structures of the composites have been studied by scanning electron microscopy which reveals that the hierarchical structure characteristic of BC is retained in the composites. Depending on the production parameters of the composites like phase separation solvent composition, copolymer composition, phase separation cooling temperature and polymer concentration, the interaction between the BC and EVOH varies and the morphology changes interestingly. A stronger interaction and slow cooling rate uniformly precipitate EVOH over the BC fibers covering it, whereas a weak interaction with fast cooling induces independent precipitation of the copolymer in the BC matrix. Viscoelasticity and compressibility measurements of the composites in the hydrogel state reveal high structural and mechanical strength which are direction dependent, confirming the retention of anisotropy characteristics of the BC structure. The elastic modulus and compression strength are found to be improved significantly upon intercalation of EVOH into the BC structure giving rise to more reinforced composites. High viscoelasticity and compression strength exhibited by the composite hydrogels indicate good mechanical stability that makes them useful as replacement materials for biological tissues. Production of anisotropic hydrogels that show a direction-dependent structure and properties, which have attracted attention in bio-mimicking, tissue engineering and bio-separation.
doi_str_mv 10.1039/d2ma00204c
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2MA00204C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2ma00204c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-5e78ad2a94f45a0acf20c9a449f9f8af7dee6b0099b1938b67a616b4b725bd533</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGo37oWshdEk82qWpT6h4kbXQ5K56UQykyFJlfkb_mJTK-rici7nfJzFQeickitKcn7dsl4QwkihjtCMVXmelQXhx__-U7QI4Y0kqKSU82qGPteuH10wEXA3td5twQbsNJZCRfBGWKzA2p11AbAY2nQYYjdZGCB7N8NksbDKdS5xbnR26sHjDxM7HHeDkBZw7_yYYrc1KpWJwQQXvRun77YeVJesfTImE3w0EM7QiRY2wOJH5-j17vZl_ZBtnu8f16tNphjlMSuhXoqWCV7oohREKM2I4qIouOZ6KXTdAlSSEM4l5flSVrWoaCULWbNStmWez9HloVd5F4IH3Yze9MJPDSXNftDmhj2tvgddJ_jiAPugfrm_wfMvTQl3bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Composite hydrogels of bacterial cellulose and an ethylene-vinyl alcohol copolymer with tunable morphological anisotropy and mechanical properties</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Takawa, Shun ; Sugawara, Akihide ; Asoh, Taka-Aki ; Nandi, Mahasweta ; Uyama, Hiroshi</creator><creatorcontrib>Takawa, Shun ; Sugawara, Akihide ; Asoh, Taka-Aki ; Nandi, Mahasweta ; Uyama, Hiroshi</creatorcontrib><description>Anisotropic hydrogels that show a direction-dependent structure and properties have been produced and attracted attention in bio-mimicking, tissue engineering and bio-separation. Herein, bacterial cellulose (BC)-ethylene-vinyl alcohol copolymer (EVOH) composites have been prepared by precipitating EVOH within solvent-substituted BC hydrogels via thermally induced phase separation. The internal structures of the composites have been studied by scanning electron microscopy which reveals that the hierarchical structure characteristic of BC is retained in the composites. Depending on the production parameters of the composites like phase separation solvent composition, copolymer composition, phase separation cooling temperature and polymer concentration, the interaction between the BC and EVOH varies and the morphology changes interestingly. A stronger interaction and slow cooling rate uniformly precipitate EVOH over the BC fibers covering it, whereas a weak interaction with fast cooling induces independent precipitation of the copolymer in the BC matrix. Viscoelasticity and compressibility measurements of the composites in the hydrogel state reveal high structural and mechanical strength which are direction dependent, confirming the retention of anisotropy characteristics of the BC structure. The elastic modulus and compression strength are found to be improved significantly upon intercalation of EVOH into the BC structure giving rise to more reinforced composites. High viscoelasticity and compression strength exhibited by the composite hydrogels indicate good mechanical stability that makes them useful as replacement materials for biological tissues. Production of anisotropic hydrogels that show a direction-dependent structure and properties, which have attracted attention in bio-mimicking, tissue engineering and bio-separation.</description><identifier>ISSN: 2633-5409</identifier><identifier>EISSN: 2633-5409</identifier><identifier>DOI: 10.1039/d2ma00204c</identifier><language>eng</language><ispartof>Materials advances, 2022-06, Vol.3 (12), p.5138-515</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-5e78ad2a94f45a0acf20c9a449f9f8af7dee6b0099b1938b67a616b4b725bd533</citedby><cites>FETCH-LOGICAL-c219t-5e78ad2a94f45a0acf20c9a449f9f8af7dee6b0099b1938b67a616b4b725bd533</cites><orcidid>0000-0002-8587-2507 ; 0000-0001-9087-5174 ; 0000-0002-3114-4774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Takawa, Shun</creatorcontrib><creatorcontrib>Sugawara, Akihide</creatorcontrib><creatorcontrib>Asoh, Taka-Aki</creatorcontrib><creatorcontrib>Nandi, Mahasweta</creatorcontrib><creatorcontrib>Uyama, Hiroshi</creatorcontrib><title>Composite hydrogels of bacterial cellulose and an ethylene-vinyl alcohol copolymer with tunable morphological anisotropy and mechanical properties</title><title>Materials advances</title><description>Anisotropic hydrogels that show a direction-dependent structure and properties have been produced and attracted attention in bio-mimicking, tissue engineering and bio-separation. Herein, bacterial cellulose (BC)-ethylene-vinyl alcohol copolymer (EVOH) composites have been prepared by precipitating EVOH within solvent-substituted BC hydrogels via thermally induced phase separation. The internal structures of the composites have been studied by scanning electron microscopy which reveals that the hierarchical structure characteristic of BC is retained in the composites. Depending on the production parameters of the composites like phase separation solvent composition, copolymer composition, phase separation cooling temperature and polymer concentration, the interaction between the BC and EVOH varies and the morphology changes interestingly. A stronger interaction and slow cooling rate uniformly precipitate EVOH over the BC fibers covering it, whereas a weak interaction with fast cooling induces independent precipitation of the copolymer in the BC matrix. Viscoelasticity and compressibility measurements of the composites in the hydrogel state reveal high structural and mechanical strength which are direction dependent, confirming the retention of anisotropy characteristics of the BC structure. The elastic modulus and compression strength are found to be improved significantly upon intercalation of EVOH into the BC structure giving rise to more reinforced composites. High viscoelasticity and compression strength exhibited by the composite hydrogels indicate good mechanical stability that makes them useful as replacement materials for biological tissues. Production of anisotropic hydrogels that show a direction-dependent structure and properties, which have attracted attention in bio-mimicking, tissue engineering and bio-separation.</description><issn>2633-5409</issn><issn>2633-5409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWGo37oWshdEk82qWpT6h4kbXQ5K56UQykyFJlfkb_mJTK-rici7nfJzFQeickitKcn7dsl4QwkihjtCMVXmelQXhx__-U7QI4Y0kqKSU82qGPteuH10wEXA3td5twQbsNJZCRfBGWKzA2p11AbAY2nQYYjdZGCB7N8NksbDKdS5xbnR26sHjDxM7HHeDkBZw7_yYYrc1KpWJwQQXvRun77YeVJesfTImE3w0EM7QiRY2wOJH5-j17vZl_ZBtnu8f16tNphjlMSuhXoqWCV7oohREKM2I4qIouOZ6KXTdAlSSEM4l5flSVrWoaCULWbNStmWez9HloVd5F4IH3Yze9MJPDSXNftDmhj2tvgddJ_jiAPugfrm_wfMvTQl3bQ</recordid><startdate>20220620</startdate><enddate>20220620</enddate><creator>Takawa, Shun</creator><creator>Sugawara, Akihide</creator><creator>Asoh, Taka-Aki</creator><creator>Nandi, Mahasweta</creator><creator>Uyama, Hiroshi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8587-2507</orcidid><orcidid>https://orcid.org/0000-0001-9087-5174</orcidid><orcidid>https://orcid.org/0000-0002-3114-4774</orcidid></search><sort><creationdate>20220620</creationdate><title>Composite hydrogels of bacterial cellulose and an ethylene-vinyl alcohol copolymer with tunable morphological anisotropy and mechanical properties</title><author>Takawa, Shun ; Sugawara, Akihide ; Asoh, Taka-Aki ; Nandi, Mahasweta ; Uyama, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-5e78ad2a94f45a0acf20c9a449f9f8af7dee6b0099b1938b67a616b4b725bd533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takawa, Shun</creatorcontrib><creatorcontrib>Sugawara, Akihide</creatorcontrib><creatorcontrib>Asoh, Taka-Aki</creatorcontrib><creatorcontrib>Nandi, Mahasweta</creatorcontrib><creatorcontrib>Uyama, Hiroshi</creatorcontrib><collection>CrossRef</collection><jtitle>Materials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takawa, Shun</au><au>Sugawara, Akihide</au><au>Asoh, Taka-Aki</au><au>Nandi, Mahasweta</au><au>Uyama, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite hydrogels of bacterial cellulose and an ethylene-vinyl alcohol copolymer with tunable morphological anisotropy and mechanical properties</atitle><jtitle>Materials advances</jtitle><date>2022-06-20</date><risdate>2022</risdate><volume>3</volume><issue>12</issue><spage>5138</spage><epage>515</epage><pages>5138-515</pages><issn>2633-5409</issn><eissn>2633-5409</eissn><abstract>Anisotropic hydrogels that show a direction-dependent structure and properties have been produced and attracted attention in bio-mimicking, tissue engineering and bio-separation. Herein, bacterial cellulose (BC)-ethylene-vinyl alcohol copolymer (EVOH) composites have been prepared by precipitating EVOH within solvent-substituted BC hydrogels via thermally induced phase separation. The internal structures of the composites have been studied by scanning electron microscopy which reveals that the hierarchical structure characteristic of BC is retained in the composites. Depending on the production parameters of the composites like phase separation solvent composition, copolymer composition, phase separation cooling temperature and polymer concentration, the interaction between the BC and EVOH varies and the morphology changes interestingly. A stronger interaction and slow cooling rate uniformly precipitate EVOH over the BC fibers covering it, whereas a weak interaction with fast cooling induces independent precipitation of the copolymer in the BC matrix. Viscoelasticity and compressibility measurements of the composites in the hydrogel state reveal high structural and mechanical strength which are direction dependent, confirming the retention of anisotropy characteristics of the BC structure. The elastic modulus and compression strength are found to be improved significantly upon intercalation of EVOH into the BC structure giving rise to more reinforced composites. High viscoelasticity and compression strength exhibited by the composite hydrogels indicate good mechanical stability that makes them useful as replacement materials for biological tissues. Production of anisotropic hydrogels that show a direction-dependent structure and properties, which have attracted attention in bio-mimicking, tissue engineering and bio-separation.</abstract><doi>10.1039/d2ma00204c</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8587-2507</orcidid><orcidid>https://orcid.org/0000-0001-9087-5174</orcidid><orcidid>https://orcid.org/0000-0002-3114-4774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2633-5409
ispartof Materials advances, 2022-06, Vol.3 (12), p.5138-515
issn 2633-5409
2633-5409
language eng
recordid cdi_crossref_primary_10_1039_D2MA00204C
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Composite hydrogels of bacterial cellulose and an ethylene-vinyl alcohol copolymer with tunable morphological anisotropy and mechanical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20hydrogels%20of%20bacterial%20cellulose%20and%20an%20ethylene-vinyl%20alcohol%20copolymer%20with%20tunable%20morphological%20anisotropy%20and%20mechanical%20properties&rft.jtitle=Materials%20advances&rft.au=Takawa,%20Shun&rft.date=2022-06-20&rft.volume=3&rft.issue=12&rft.spage=5138&rft.epage=515&rft.pages=5138-515&rft.issn=2633-5409&rft.eissn=2633-5409&rft_id=info:doi/10.1039/d2ma00204c&rft_dat=%3Crsc_cross%3Ed2ma00204c%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true