Vascularized human brain organoid on-chip

Modelling the human brain in vitro has been extremely challenging due to the brain's intricate cellular composition and specific structural architecture. The recent emergence of brain organoids that recapitulate many key features of human brain development has thus piqued the interest of many t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2023-06, Vol.23 (12), p.2693-279
Hauptverfasser: Tan, Sin Yen, Feng, Xiaohan, Cheng, Lily Kwan Wai, Wu, Angela Ruohao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 12
container_start_page 2693
container_title Lab on a chip
container_volume 23
creator Tan, Sin Yen
Feng, Xiaohan
Cheng, Lily Kwan Wai
Wu, Angela Ruohao
description Modelling the human brain in vitro has been extremely challenging due to the brain's intricate cellular composition and specific structural architecture. The recent emergence of brain organoids that recapitulate many key features of human brain development has thus piqued the interest of many to further develop and apply this in vitro model for various physiological and pathological investigations. Despite ongoing efforts, the existing brain organoids demonstrate several limitations, such as the lack of a functional human vasculature with perfusion capability. Microfluidics is suited to enhance such brain organoid models by enabling vascular perfusion and a curated blood-brain barrier microenvironment. In this review, we first provide an introduction to in vivo human brain development and present the state-of-the-art in vitro human brain models. We further elaborate on different strategies to improve the vascularized human brain organoid microenvironment using microfluidic devices, while discussing the current obstacles and future directions in this field. We review the existing in vitro human brain models and elaborate on various strategies that enable the curation of a vascularized human brain organoid using microfluidic devices.
doi_str_mv 10.1039/d2lc01109c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2LC01109C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821341611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-adc7c9cd5fa19849bd247a681042c7d5b4afcae35ae373c3b2fc33fc08f5dedc3</originalsourceid><addsrcrecordid>eNpd0c1LwzAYBvAgipvTi3el4EWFaj6b5Cj1EwZe1GtJ36Suo21msh70r7dzc4KH8AbeHw_hCULHBF8RzPS1pQ1gQrCGHTQmXLIUE6V3t3ctR-ggxjnGRPBM7aMRk1RkImNjdPFmIvSNCfWXs8msb02XlMHUXeLDu-l8bRPfpTCrF4dorzJNdEebOUGv93cv-WM6fX54ym-mKXCFl6mxIEGDFZUhWnFdWsqlyRTBnIK0ouSmAuOYGI5kwEpaAWMVYFUJ6yywCTpf5y6C_-hdXBZtHcE1jemc72NBFSWMk4yQgZ79o3Pfh2543UqJoRGm1aAu1wqCjzG4qliEujXhsyC4WBVY3NJp_lNgPuDTTWRfts5u6W9jAzhZgxBhu_37AfYNgc9z0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825109398</pqid></control><display><type>article</type><title>Vascularized human brain organoid on-chip</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tan, Sin Yen ; Feng, Xiaohan ; Cheng, Lily Kwan Wai ; Wu, Angela Ruohao</creator><creatorcontrib>Tan, Sin Yen ; Feng, Xiaohan ; Cheng, Lily Kwan Wai ; Wu, Angela Ruohao</creatorcontrib><description>Modelling the human brain in vitro has been extremely challenging due to the brain's intricate cellular composition and specific structural architecture. The recent emergence of brain organoids that recapitulate many key features of human brain development has thus piqued the interest of many to further develop and apply this in vitro model for various physiological and pathological investigations. Despite ongoing efforts, the existing brain organoids demonstrate several limitations, such as the lack of a functional human vasculature with perfusion capability. Microfluidics is suited to enhance such brain organoid models by enabling vascular perfusion and a curated blood-brain barrier microenvironment. In this review, we first provide an introduction to in vivo human brain development and present the state-of-the-art in vitro human brain models. We further elaborate on different strategies to improve the vascularized human brain organoid microenvironment using microfluidic devices, while discussing the current obstacles and future directions in this field. We review the existing in vitro human brain models and elaborate on various strategies that enable the curation of a vascularized human brain organoid using microfluidic devices.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d2lc01109c</identifier><identifier>PMID: 37256563</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Blood-brain barrier ; Brain ; Cellular structure ; Humans ; Microfluidic devices ; Microfluidics ; Organoids - chemistry</subject><ispartof>Lab on a chip, 2023-06, Vol.23 (12), p.2693-279</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-adc7c9cd5fa19849bd247a681042c7d5b4afcae35ae373c3b2fc33fc08f5dedc3</citedby><cites>FETCH-LOGICAL-c480t-adc7c9cd5fa19849bd247a681042c7d5b4afcae35ae373c3b2fc33fc08f5dedc3</cites><orcidid>0000-0002-3531-4830 ; 0000-0001-6617-2866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37256563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Sin Yen</creatorcontrib><creatorcontrib>Feng, Xiaohan</creatorcontrib><creatorcontrib>Cheng, Lily Kwan Wai</creatorcontrib><creatorcontrib>Wu, Angela Ruohao</creatorcontrib><title>Vascularized human brain organoid on-chip</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Modelling the human brain in vitro has been extremely challenging due to the brain's intricate cellular composition and specific structural architecture. The recent emergence of brain organoids that recapitulate many key features of human brain development has thus piqued the interest of many to further develop and apply this in vitro model for various physiological and pathological investigations. Despite ongoing efforts, the existing brain organoids demonstrate several limitations, such as the lack of a functional human vasculature with perfusion capability. Microfluidics is suited to enhance such brain organoid models by enabling vascular perfusion and a curated blood-brain barrier microenvironment. In this review, we first provide an introduction to in vivo human brain development and present the state-of-the-art in vitro human brain models. We further elaborate on different strategies to improve the vascularized human brain organoid microenvironment using microfluidic devices, while discussing the current obstacles and future directions in this field. We review the existing in vitro human brain models and elaborate on various strategies that enable the curation of a vascularized human brain organoid using microfluidic devices.</description><subject>Blood-brain barrier</subject><subject>Brain</subject><subject>Cellular structure</subject><subject>Humans</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Organoids - chemistry</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c1LwzAYBvAgipvTi3el4EWFaj6b5Cj1EwZe1GtJ36Suo21msh70r7dzc4KH8AbeHw_hCULHBF8RzPS1pQ1gQrCGHTQmXLIUE6V3t3ctR-ggxjnGRPBM7aMRk1RkImNjdPFmIvSNCfWXs8msb02XlMHUXeLDu-l8bRPfpTCrF4dorzJNdEebOUGv93cv-WM6fX54ym-mKXCFl6mxIEGDFZUhWnFdWsqlyRTBnIK0ouSmAuOYGI5kwEpaAWMVYFUJ6yywCTpf5y6C_-hdXBZtHcE1jemc72NBFSWMk4yQgZ79o3Pfh2543UqJoRGm1aAu1wqCjzG4qliEujXhsyC4WBVY3NJp_lNgPuDTTWRfts5u6W9jAzhZgxBhu_37AfYNgc9z0w</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Tan, Sin Yen</creator><creator>Feng, Xiaohan</creator><creator>Cheng, Lily Kwan Wai</creator><creator>Wu, Angela Ruohao</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3531-4830</orcidid><orcidid>https://orcid.org/0000-0001-6617-2866</orcidid></search><sort><creationdate>20230613</creationdate><title>Vascularized human brain organoid on-chip</title><author>Tan, Sin Yen ; Feng, Xiaohan ; Cheng, Lily Kwan Wai ; Wu, Angela Ruohao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-adc7c9cd5fa19849bd247a681042c7d5b4afcae35ae373c3b2fc33fc08f5dedc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood-brain barrier</topic><topic>Brain</topic><topic>Cellular structure</topic><topic>Humans</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Organoids - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Sin Yen</creatorcontrib><creatorcontrib>Feng, Xiaohan</creatorcontrib><creatorcontrib>Cheng, Lily Kwan Wai</creatorcontrib><creatorcontrib>Wu, Angela Ruohao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Sin Yen</au><au>Feng, Xiaohan</au><au>Cheng, Lily Kwan Wai</au><au>Wu, Angela Ruohao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascularized human brain organoid on-chip</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>2693</spage><epage>279</epage><pages>2693-279</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Modelling the human brain in vitro has been extremely challenging due to the brain's intricate cellular composition and specific structural architecture. The recent emergence of brain organoids that recapitulate many key features of human brain development has thus piqued the interest of many to further develop and apply this in vitro model for various physiological and pathological investigations. Despite ongoing efforts, the existing brain organoids demonstrate several limitations, such as the lack of a functional human vasculature with perfusion capability. Microfluidics is suited to enhance such brain organoid models by enabling vascular perfusion and a curated blood-brain barrier microenvironment. In this review, we first provide an introduction to in vivo human brain development and present the state-of-the-art in vitro human brain models. We further elaborate on different strategies to improve the vascularized human brain organoid microenvironment using microfluidic devices, while discussing the current obstacles and future directions in this field. We review the existing in vitro human brain models and elaborate on various strategies that enable the curation of a vascularized human brain organoid using microfluidic devices.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37256563</pmid><doi>10.1039/d2lc01109c</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3531-4830</orcidid><orcidid>https://orcid.org/0000-0001-6617-2866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2023-06, Vol.23 (12), p.2693-279
issn 1473-0197
1473-0189
language eng
recordid cdi_crossref_primary_10_1039_D2LC01109C
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Blood-brain barrier
Brain
Cellular structure
Humans
Microfluidic devices
Microfluidics
Organoids - chemistry
title Vascularized human brain organoid on-chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascularized%20human%20brain%20organoid%20on-chip&rft.jtitle=Lab%20on%20a%20chip&rft.au=Tan,%20Sin%20Yen&rft.date=2023-06-13&rft.volume=23&rft.issue=12&rft.spage=2693&rft.epage=279&rft.pages=2693-279&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d2lc01109c&rft_dat=%3Cproquest_cross%3E2821341611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825109398&rft_id=info:pmid/37256563&rfr_iscdi=true