Catalytic cascade vapor-phase hydrotreatment of plastic waste into fuels and its sustainability assessment
The COVID-19 pandemic impacted the world through the anguish from a fast-spreading virus and by struggling with the increasing plastic waste. A catalytic cascade process where hydropyrolysis was coupled with downstream vapor-phase hydrotreatment was employed for the first time to upcycle real-world...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2022-10, Vol.24 (21), p.8562-8571 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8571 |
---|---|
container_issue | 21 |
container_start_page | 8562 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 24 |
creator | Wang, Jia Jiang, Jianchun Dong, Xinyue Zhang, Yiyun Yuan, Xiangzhou Meng, Xianzhi Zhan, Guowu Wang, Lei Wang, Yanqin Ragauskas, Arthur J |
description | The COVID-19 pandemic impacted the world through the anguish from a fast-spreading virus and by struggling with the increasing plastic waste. A catalytic cascade process where hydropyrolysis was coupled with downstream vapor-phase hydrotreatment was employed for the first time to upcycle real-world mixed plastic waste into drop-in fuels. This tandem vapor-phase hydrotreatment technology is feedstock-agnostic and therefore capable of upcycling different kinds of personal protective equipment (PPE) plastic waste into drop-in fuels over a non-noble bifunctional Ni/NiAl
2
O
4
catalyst. A maximum 88.9 wt% single-pass yield of drop-in fuel-range hydrocarbons was obtained with a hydrotreatment temperature of 300 °C at 0.3 MPa H
2
. Life cycle assessment showed that this catalytic cascade vapor-phase hydrotreatment approach had a high energy efficiency of 94%. The global warming potential of the obtained fuel could be reduced by 72% as a maximum in the low carbon future, compared with conventional fuel blends, indicating that it can be used as a promising chemical upcycling technology for achieving a sustainable plastic circular economy.
A novel catalytic cascade process for transforming different kinds of plastic waste into drop-in fuels was proposed. |
doi_str_mv | 10.1039/d2gc02538h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2GC02538H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730302108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7311fe9e619e38ecd13ad946a7a56d6b4e431dd62072df69b038bcaac3f089893</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgCq6rF-9CwJtQzUc3bY5SdVdY8KLnMk1SN0u3rZlU6b-364qe3jk8MwMvIZec3XIm9Z0V74aJhcw3R2TGUyUTLTJ2_DcrcUrOELeMcZ6pdEa2BURoxugNNYAGrKOf0Hch6TeAjm5GG7oYHMSdayPtato3gHv9NYWjvo0drQfXIIXWUh-R4oARfAuVb3wcKSA6xP32OTmpoUF38Ztz8vb0-FqskvXL8rm4XydG5DwmmeS8dtoprp3MnbFcgtWpggwWyqoqdank1irBMmFrpSsm88oAGFmzXOdazsn14W4fuo_BYSy33RDa6WUpMskkE5zlk7o5KBM6xODqsg9-B2EsOSv3XZYPYln8dLma8NUBBzR_7r9r-Q0XO3LG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730302108</pqid></control><display><type>article</type><title>Catalytic cascade vapor-phase hydrotreatment of plastic waste into fuels and its sustainability assessment</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Jia ; Jiang, Jianchun ; Dong, Xinyue ; Zhang, Yiyun ; Yuan, Xiangzhou ; Meng, Xianzhi ; Zhan, Guowu ; Wang, Lei ; Wang, Yanqin ; Ragauskas, Arthur J</creator><creatorcontrib>Wang, Jia ; Jiang, Jianchun ; Dong, Xinyue ; Zhang, Yiyun ; Yuan, Xiangzhou ; Meng, Xianzhi ; Zhan, Guowu ; Wang, Lei ; Wang, Yanqin ; Ragauskas, Arthur J</creatorcontrib><description>The COVID-19 pandemic impacted the world through the anguish from a fast-spreading virus and by struggling with the increasing plastic waste. A catalytic cascade process where hydropyrolysis was coupled with downstream vapor-phase hydrotreatment was employed for the first time to upcycle real-world mixed plastic waste into drop-in fuels. This tandem vapor-phase hydrotreatment technology is feedstock-agnostic and therefore capable of upcycling different kinds of personal protective equipment (PPE) plastic waste into drop-in fuels over a non-noble bifunctional Ni/NiAl
2
O
4
catalyst. A maximum 88.9 wt% single-pass yield of drop-in fuel-range hydrocarbons was obtained with a hydrotreatment temperature of 300 °C at 0.3 MPa H
2
. Life cycle assessment showed that this catalytic cascade vapor-phase hydrotreatment approach had a high energy efficiency of 94%. The global warming potential of the obtained fuel could be reduced by 72% as a maximum in the low carbon future, compared with conventional fuel blends, indicating that it can be used as a promising chemical upcycling technology for achieving a sustainable plastic circular economy.
A novel catalytic cascade process for transforming different kinds of plastic waste into drop-in fuels was proposed.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d2gc02538h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Climate change ; COVID-19 ; Energy efficiency ; Fuels ; Global warming ; Green chemistry ; Hydropyrolysis ; Life cycle analysis ; Life cycle assessment ; Life cycles ; Pandemics ; Plastic debris ; Protective equipment ; Sustainability ; Technology ; Vapors ; Viruses</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2022-10, Vol.24 (21), p.8562-8571</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-7311fe9e619e38ecd13ad946a7a56d6b4e431dd62072df69b038bcaac3f089893</citedby><cites>FETCH-LOGICAL-c281t-7311fe9e619e38ecd13ad946a7a56d6b4e431dd62072df69b038bcaac3f089893</cites><orcidid>0000-0002-8082-2770 ; 0000-0002-6337-3758 ; 0000-0003-4128-687X ; 0000-0002-3536-554X ; 0000-0003-4303-3403 ; 0000-0002-6480-3983 ; 0000-0002-5636-0617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Jiang, Jianchun</creatorcontrib><creatorcontrib>Dong, Xinyue</creatorcontrib><creatorcontrib>Zhang, Yiyun</creatorcontrib><creatorcontrib>Yuan, Xiangzhou</creatorcontrib><creatorcontrib>Meng, Xianzhi</creatorcontrib><creatorcontrib>Zhan, Guowu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Yanqin</creatorcontrib><creatorcontrib>Ragauskas, Arthur J</creatorcontrib><title>Catalytic cascade vapor-phase hydrotreatment of plastic waste into fuels and its sustainability assessment</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>The COVID-19 pandemic impacted the world through the anguish from a fast-spreading virus and by struggling with the increasing plastic waste. A catalytic cascade process where hydropyrolysis was coupled with downstream vapor-phase hydrotreatment was employed for the first time to upcycle real-world mixed plastic waste into drop-in fuels. This tandem vapor-phase hydrotreatment technology is feedstock-agnostic and therefore capable of upcycling different kinds of personal protective equipment (PPE) plastic waste into drop-in fuels over a non-noble bifunctional Ni/NiAl
2
O
4
catalyst. A maximum 88.9 wt% single-pass yield of drop-in fuel-range hydrocarbons was obtained with a hydrotreatment temperature of 300 °C at 0.3 MPa H
2
. Life cycle assessment showed that this catalytic cascade vapor-phase hydrotreatment approach had a high energy efficiency of 94%. The global warming potential of the obtained fuel could be reduced by 72% as a maximum in the low carbon future, compared with conventional fuel blends, indicating that it can be used as a promising chemical upcycling technology for achieving a sustainable plastic circular economy.
A novel catalytic cascade process for transforming different kinds of plastic waste into drop-in fuels was proposed.</description><subject>Catalysts</subject><subject>Climate change</subject><subject>COVID-19</subject><subject>Energy efficiency</subject><subject>Fuels</subject><subject>Global warming</subject><subject>Green chemistry</subject><subject>Hydropyrolysis</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Life cycles</subject><subject>Pandemics</subject><subject>Plastic debris</subject><subject>Protective equipment</subject><subject>Sustainability</subject><subject>Technology</subject><subject>Vapors</subject><subject>Viruses</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgCq6rF-9CwJtQzUc3bY5SdVdY8KLnMk1SN0u3rZlU6b-364qe3jk8MwMvIZec3XIm9Z0V74aJhcw3R2TGUyUTLTJ2_DcrcUrOELeMcZ6pdEa2BURoxugNNYAGrKOf0Hch6TeAjm5GG7oYHMSdayPtato3gHv9NYWjvo0drQfXIIXWUh-R4oARfAuVb3wcKSA6xP32OTmpoUF38Ztz8vb0-FqskvXL8rm4XydG5DwmmeS8dtoprp3MnbFcgtWpggwWyqoqdank1irBMmFrpSsm88oAGFmzXOdazsn14W4fuo_BYSy33RDa6WUpMskkE5zlk7o5KBM6xODqsg9-B2EsOSv3XZYPYln8dLma8NUBBzR_7r9r-Q0XO3LG</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Wang, Jia</creator><creator>Jiang, Jianchun</creator><creator>Dong, Xinyue</creator><creator>Zhang, Yiyun</creator><creator>Yuan, Xiangzhou</creator><creator>Meng, Xianzhi</creator><creator>Zhan, Guowu</creator><creator>Wang, Lei</creator><creator>Wang, Yanqin</creator><creator>Ragauskas, Arthur J</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8082-2770</orcidid><orcidid>https://orcid.org/0000-0002-6337-3758</orcidid><orcidid>https://orcid.org/0000-0003-4128-687X</orcidid><orcidid>https://orcid.org/0000-0002-3536-554X</orcidid><orcidid>https://orcid.org/0000-0003-4303-3403</orcidid><orcidid>https://orcid.org/0000-0002-6480-3983</orcidid><orcidid>https://orcid.org/0000-0002-5636-0617</orcidid></search><sort><creationdate>20221031</creationdate><title>Catalytic cascade vapor-phase hydrotreatment of plastic waste into fuels and its sustainability assessment</title><author>Wang, Jia ; Jiang, Jianchun ; Dong, Xinyue ; Zhang, Yiyun ; Yuan, Xiangzhou ; Meng, Xianzhi ; Zhan, Guowu ; Wang, Lei ; Wang, Yanqin ; Ragauskas, Arthur J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7311fe9e619e38ecd13ad946a7a56d6b4e431dd62072df69b038bcaac3f089893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Climate change</topic><topic>COVID-19</topic><topic>Energy efficiency</topic><topic>Fuels</topic><topic>Global warming</topic><topic>Green chemistry</topic><topic>Hydropyrolysis</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Life cycles</topic><topic>Pandemics</topic><topic>Plastic debris</topic><topic>Protective equipment</topic><topic>Sustainability</topic><topic>Technology</topic><topic>Vapors</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Jiang, Jianchun</creatorcontrib><creatorcontrib>Dong, Xinyue</creatorcontrib><creatorcontrib>Zhang, Yiyun</creatorcontrib><creatorcontrib>Yuan, Xiangzhou</creatorcontrib><creatorcontrib>Meng, Xianzhi</creatorcontrib><creatorcontrib>Zhan, Guowu</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Yanqin</creatorcontrib><creatorcontrib>Ragauskas, Arthur J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jia</au><au>Jiang, Jianchun</au><au>Dong, Xinyue</au><au>Zhang, Yiyun</au><au>Yuan, Xiangzhou</au><au>Meng, Xianzhi</au><au>Zhan, Guowu</au><au>Wang, Lei</au><au>Wang, Yanqin</au><au>Ragauskas, Arthur J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic cascade vapor-phase hydrotreatment of plastic waste into fuels and its sustainability assessment</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2022-10-31</date><risdate>2022</risdate><volume>24</volume><issue>21</issue><spage>8562</spage><epage>8571</epage><pages>8562-8571</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>The COVID-19 pandemic impacted the world through the anguish from a fast-spreading virus and by struggling with the increasing plastic waste. A catalytic cascade process where hydropyrolysis was coupled with downstream vapor-phase hydrotreatment was employed for the first time to upcycle real-world mixed plastic waste into drop-in fuels. This tandem vapor-phase hydrotreatment technology is feedstock-agnostic and therefore capable of upcycling different kinds of personal protective equipment (PPE) plastic waste into drop-in fuels over a non-noble bifunctional Ni/NiAl
2
O
4
catalyst. A maximum 88.9 wt% single-pass yield of drop-in fuel-range hydrocarbons was obtained with a hydrotreatment temperature of 300 °C at 0.3 MPa H
2
. Life cycle assessment showed that this catalytic cascade vapor-phase hydrotreatment approach had a high energy efficiency of 94%. The global warming potential of the obtained fuel could be reduced by 72% as a maximum in the low carbon future, compared with conventional fuel blends, indicating that it can be used as a promising chemical upcycling technology for achieving a sustainable plastic circular economy.
A novel catalytic cascade process for transforming different kinds of plastic waste into drop-in fuels was proposed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2gc02538h</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8082-2770</orcidid><orcidid>https://orcid.org/0000-0002-6337-3758</orcidid><orcidid>https://orcid.org/0000-0003-4128-687X</orcidid><orcidid>https://orcid.org/0000-0002-3536-554X</orcidid><orcidid>https://orcid.org/0000-0003-4303-3403</orcidid><orcidid>https://orcid.org/0000-0002-6480-3983</orcidid><orcidid>https://orcid.org/0000-0002-5636-0617</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2022-10, Vol.24 (21), p.8562-8571 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2GC02538H |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Catalysts Climate change COVID-19 Energy efficiency Fuels Global warming Green chemistry Hydropyrolysis Life cycle analysis Life cycle assessment Life cycles Pandemics Plastic debris Protective equipment Sustainability Technology Vapors Viruses |
title | Catalytic cascade vapor-phase hydrotreatment of plastic waste into fuels and its sustainability assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20cascade%20vapor-phase%20hydrotreatment%20of%20plastic%20waste%20into%20fuels%20and%20its%20sustainability%20assessment&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Wang,%20Jia&rft.date=2022-10-31&rft.volume=24&rft.issue=21&rft.spage=8562&rft.epage=8571&rft.pages=8562-8571&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d2gc02538h&rft_dat=%3Cproquest_cross%3E2730302108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730302108&rft_id=info:pmid/&rfr_iscdi=true |