Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries
Solid-state lithium metal batteries (SSLMBs) are considered as one of the most promising energy storage systems because of their high-energy density and intrinsic good safety. However, the practical application of SSLMBs is hindered by the huge interfacial resistance and growth of detrimental Li den...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2023-03, Vol.16 (3), p.149-161 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | 3 |
container_start_page | 149 |
container_title | Energy & environmental science |
container_volume | 16 |
creator | Lu, Guanjie Li, Menghong Chen, Peng Zheng, Weikang Yang, Zuguang Wang, Ronghua Xu, Chaohe |
description | Solid-state lithium metal batteries (SSLMBs) are considered as one of the most promising energy storage systems because of their high-energy density and intrinsic good safety. However, the practical application of SSLMBs is hindered by the huge interfacial resistance and growth of detrimental Li dendrites. To solve these obstacles, a composite lithium anode (CLA) with built-in well-dispersed ionic conductive Li
3
N and LiN
x
O
y
species is specially designed and prepared, which on one hand greatly promote the intrinsic ionic diffusion capability of the bulk lithium anode, and on the other hand simultaneously improve the wettability of the anode towards solid-state electrolyte (SSE), construct a robust and high ionic conductive solid-state interface and effectively enhance the chemical contact of Li/SSE as demonstrated by density functional theory (DFT) calculations. A top-level area specific capacity (1.5 mA h cm
−2
, 0.5 mA cm
−2
) and ultra-high critical current density (1.4 mA cm
−2
) are achieved for all-solid-state symmetric cells at room temperature. The full SSLMB coupling with the CLA and commercial LiFePO
4
(LFP) cathode achieves excellent cycling performance as long as 500 cycles with a capacity retention of 80.0% and high-rate capability of 2.0 C. Even under high voltage (4.3 V) conditions, the solid-state full cell matched with LiNi
0.8
Co
0.1
Mn
0.1
O
2
(NCM811) could stably be cycled more than 115 times with a retention of 80.0%. The findings provide a new composite anode strategy for high-performance solid-state Li metal batteries.
A composite lithium anode with built-in superionic conductive Li
3
N and LiN
x
O
y
phases can greatly promote the ionic diffusion capability of bulk lithium, simultaneously improve the wettability, and construct a robust ionic conductive interface. |
doi_str_mv | 10.1039/d2ee03709b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2EE03709B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786899649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7aa814c78c16dcf76ec8d39022dd1573249c6c171807d2398d8ff54d3854149a3</originalsourceid><addsrcrecordid>eNpNkclKBDEQhhtRcBy9eBcC3sTWJL0kObqMCwhe9NxkkoqToSdpk7Tg4_imZhy3U21f_VXwF8UhwWcEV-JcUwBcMSzmW8WEsKYuG4bb7Z-8FXS32ItxiXFLMROT4uNytH0qrUNxHCBY76xCyjs9qmTfAA0LGSEicHLeW_eCNDgdbILSBIBT1Pvc662BOEiHpNNoYV8WKA6grFkryUEqm96z5GrwMS9mOi3suELGBxRTlgUUfW91mYt_47lMKf8Dcb_YMbKPcPAdp8Xzzezp6q58eLy9v7p4KBXlJJVMSk5qxbgirVaGtaC4rgSmVGvSsIrWQrWKMMIx07QSXHNjmlpXvKlJLWQ1LY43ukPwryPE1C39GFw-2VHGWy5EW4tMnWwoFXyMAUw3BLuS4b0juFtb0F3T2ezLgssMH23gENUv92dR9Ql_hYZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786899649</pqid></control><display><type>article</type><title>Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lu, Guanjie ; Li, Menghong ; Chen, Peng ; Zheng, Weikang ; Yang, Zuguang ; Wang, Ronghua ; Xu, Chaohe</creator><creatorcontrib>Lu, Guanjie ; Li, Menghong ; Chen, Peng ; Zheng, Weikang ; Yang, Zuguang ; Wang, Ronghua ; Xu, Chaohe</creatorcontrib><description>Solid-state lithium metal batteries (SSLMBs) are considered as one of the most promising energy storage systems because of their high-energy density and intrinsic good safety. However, the practical application of SSLMBs is hindered by the huge interfacial resistance and growth of detrimental Li dendrites. To solve these obstacles, a composite lithium anode (CLA) with built-in well-dispersed ionic conductive Li
3
N and LiN
x
O
y
species is specially designed and prepared, which on one hand greatly promote the intrinsic ionic diffusion capability of the bulk lithium anode, and on the other hand simultaneously improve the wettability of the anode towards solid-state electrolyte (SSE), construct a robust and high ionic conductive solid-state interface and effectively enhance the chemical contact of Li/SSE as demonstrated by density functional theory (DFT) calculations. A top-level area specific capacity (1.5 mA h cm
−2
, 0.5 mA cm
−2
) and ultra-high critical current density (1.4 mA cm
−2
) are achieved for all-solid-state symmetric cells at room temperature. The full SSLMB coupling with the CLA and commercial LiFePO
4
(LFP) cathode achieves excellent cycling performance as long as 500 cycles with a capacity retention of 80.0% and high-rate capability of 2.0 C. Even under high voltage (4.3 V) conditions, the solid-state full cell matched with LiNi
0.8
Co
0.1
Mn
0.1
O
2
(NCM811) could stably be cycled more than 115 times with a retention of 80.0%. The findings provide a new composite anode strategy for high-performance solid-state Li metal batteries.
A composite lithium anode with built-in superionic conductive Li
3
N and LiN
x
O
y
phases can greatly promote the ionic diffusion capability of bulk lithium, simultaneously improve the wettability, and construct a robust ionic conductive interface.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee03709b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Critical current density ; Dendrites ; Density functional theory ; Electrolytic cells ; Energy storage ; High voltage ; Ion diffusion ; Life span ; Lithium ; Lithium batteries ; Retention ; Room temperature ; Solid state ; Specific capacity ; Storage systems ; Wettability</subject><ispartof>Energy & environmental science, 2023-03, Vol.16 (3), p.149-161</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-7aa814c78c16dcf76ec8d39022dd1573249c6c171807d2398d8ff54d3854149a3</citedby><cites>FETCH-LOGICAL-c281t-7aa814c78c16dcf76ec8d39022dd1573249c6c171807d2398d8ff54d3854149a3</cites><orcidid>0000-0002-1345-1420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lu, Guanjie</creatorcontrib><creatorcontrib>Li, Menghong</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Zheng, Weikang</creatorcontrib><creatorcontrib>Yang, Zuguang</creatorcontrib><creatorcontrib>Wang, Ronghua</creatorcontrib><creatorcontrib>Xu, Chaohe</creatorcontrib><title>Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries</title><title>Energy & environmental science</title><description>Solid-state lithium metal batteries (SSLMBs) are considered as one of the most promising energy storage systems because of their high-energy density and intrinsic good safety. However, the practical application of SSLMBs is hindered by the huge interfacial resistance and growth of detrimental Li dendrites. To solve these obstacles, a composite lithium anode (CLA) with built-in well-dispersed ionic conductive Li
3
N and LiN
x
O
y
species is specially designed and prepared, which on one hand greatly promote the intrinsic ionic diffusion capability of the bulk lithium anode, and on the other hand simultaneously improve the wettability of the anode towards solid-state electrolyte (SSE), construct a robust and high ionic conductive solid-state interface and effectively enhance the chemical contact of Li/SSE as demonstrated by density functional theory (DFT) calculations. A top-level area specific capacity (1.5 mA h cm
−2
, 0.5 mA cm
−2
) and ultra-high critical current density (1.4 mA cm
−2
) are achieved for all-solid-state symmetric cells at room temperature. The full SSLMB coupling with the CLA and commercial LiFePO
4
(LFP) cathode achieves excellent cycling performance as long as 500 cycles with a capacity retention of 80.0% and high-rate capability of 2.0 C. Even under high voltage (4.3 V) conditions, the solid-state full cell matched with LiNi
0.8
Co
0.1
Mn
0.1
O
2
(NCM811) could stably be cycled more than 115 times with a retention of 80.0%. The findings provide a new composite anode strategy for high-performance solid-state Li metal batteries.
A composite lithium anode with built-in superionic conductive Li
3
N and LiN
x
O
y
phases can greatly promote the ionic diffusion capability of bulk lithium, simultaneously improve the wettability, and construct a robust ionic conductive interface.</description><subject>Critical current density</subject><subject>Dendrites</subject><subject>Density functional theory</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>High voltage</subject><subject>Ion diffusion</subject><subject>Life span</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Retention</subject><subject>Room temperature</subject><subject>Solid state</subject><subject>Specific capacity</subject><subject>Storage systems</subject><subject>Wettability</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkclKBDEQhhtRcBy9eBcC3sTWJL0kObqMCwhe9NxkkoqToSdpk7Tg4_imZhy3U21f_VXwF8UhwWcEV-JcUwBcMSzmW8WEsKYuG4bb7Z-8FXS32ItxiXFLMROT4uNytH0qrUNxHCBY76xCyjs9qmTfAA0LGSEicHLeW_eCNDgdbILSBIBT1Pvc662BOEiHpNNoYV8WKA6grFkryUEqm96z5GrwMS9mOi3suELGBxRTlgUUfW91mYt_47lMKf8Dcb_YMbKPcPAdp8Xzzezp6q58eLy9v7p4KBXlJJVMSk5qxbgirVaGtaC4rgSmVGvSsIrWQrWKMMIx07QSXHNjmlpXvKlJLWQ1LY43ukPwryPE1C39GFw-2VHGWy5EW4tMnWwoFXyMAUw3BLuS4b0juFtb0F3T2ezLgssMH23gENUv92dR9Ql_hYZo</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Lu, Guanjie</creator><creator>Li, Menghong</creator><creator>Chen, Peng</creator><creator>Zheng, Weikang</creator><creator>Yang, Zuguang</creator><creator>Wang, Ronghua</creator><creator>Xu, Chaohe</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1345-1420</orcidid></search><sort><creationdate>20230315</creationdate><title>Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries</title><author>Lu, Guanjie ; Li, Menghong ; Chen, Peng ; Zheng, Weikang ; Yang, Zuguang ; Wang, Ronghua ; Xu, Chaohe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7aa814c78c16dcf76ec8d39022dd1573249c6c171807d2398d8ff54d3854149a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Critical current density</topic><topic>Dendrites</topic><topic>Density functional theory</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>High voltage</topic><topic>Ion diffusion</topic><topic>Life span</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Retention</topic><topic>Room temperature</topic><topic>Solid state</topic><topic>Specific capacity</topic><topic>Storage systems</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Guanjie</creatorcontrib><creatorcontrib>Li, Menghong</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Zheng, Weikang</creatorcontrib><creatorcontrib>Yang, Zuguang</creatorcontrib><creatorcontrib>Wang, Ronghua</creatorcontrib><creatorcontrib>Xu, Chaohe</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Guanjie</au><au>Li, Menghong</au><au>Chen, Peng</au><au>Zheng, Weikang</au><au>Yang, Zuguang</au><au>Wang, Ronghua</au><au>Xu, Chaohe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries</atitle><jtitle>Energy & environmental science</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>149</spage><epage>161</epage><pages>149-161</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Solid-state lithium metal batteries (SSLMBs) are considered as one of the most promising energy storage systems because of their high-energy density and intrinsic good safety. However, the practical application of SSLMBs is hindered by the huge interfacial resistance and growth of detrimental Li dendrites. To solve these obstacles, a composite lithium anode (CLA) with built-in well-dispersed ionic conductive Li
3
N and LiN
x
O
y
species is specially designed and prepared, which on one hand greatly promote the intrinsic ionic diffusion capability of the bulk lithium anode, and on the other hand simultaneously improve the wettability of the anode towards solid-state electrolyte (SSE), construct a robust and high ionic conductive solid-state interface and effectively enhance the chemical contact of Li/SSE as demonstrated by density functional theory (DFT) calculations. A top-level area specific capacity (1.5 mA h cm
−2
, 0.5 mA cm
−2
) and ultra-high critical current density (1.4 mA cm
−2
) are achieved for all-solid-state symmetric cells at room temperature. The full SSLMB coupling with the CLA and commercial LiFePO
4
(LFP) cathode achieves excellent cycling performance as long as 500 cycles with a capacity retention of 80.0% and high-rate capability of 2.0 C. Even under high voltage (4.3 V) conditions, the solid-state full cell matched with LiNi
0.8
Co
0.1
Mn
0.1
O
2
(NCM811) could stably be cycled more than 115 times with a retention of 80.0%. The findings provide a new composite anode strategy for high-performance solid-state Li metal batteries.
A composite lithium anode with built-in superionic conductive Li
3
N and LiN
x
O
y
phases can greatly promote the ionic diffusion capability of bulk lithium, simultaneously improve the wettability, and construct a robust ionic conductive interface.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee03709b</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1345-1420</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2023-03, Vol.16 (3), p.149-161 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2EE03709B |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Critical current density Dendrites Density functional theory Electrolytic cells Energy storage High voltage Ion diffusion Life span Lithium Lithium batteries Retention Room temperature Solid state Specific capacity Storage systems Wettability |
title | Built-in superionic conductive phases enabling dendrite-free, long lifespan and high specific capacity composite lithium for stable solid-state lithium batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Built-in%20superionic%20conductive%20phases%20enabling%20dendrite-free,%20long%20lifespan%20and%20high%20specific%20capacity%20composite%20lithium%20for%20stable%20solid-state%20lithium%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Lu,%20Guanjie&rft.date=2023-03-15&rft.volume=16&rft.issue=3&rft.spage=149&rft.epage=161&rft.pages=149-161&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee03709b&rft_dat=%3Cproquest_cross%3E2786899649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786899649&rft_id=info:pmid/&rfr_iscdi=true |