An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency
How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-12, Vol.15 (12), p.5192-521 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 521 |
---|---|
container_issue | 12 |
container_start_page | 5192 |
container_title | Energy & environmental science |
container_volume | 15 |
creator | Wan, Ji Wu, Yao Sun, Rui Qiao, Jiawei Hao, Xiaotao Min, Jie |
description | How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the L8-BO:BTP-F3Cl alloy acceptor shows larger exciton diffusion length, higher photoluminescence quantum yield and superior electron mobility. With the introduction of BTP-F3Cl, the red-shifted absorption spectra, the prolonged exciton lifetime, the enhanced charge transport property, and the depressed non-radiative recombination promote the ternary system to obtain improved short-circuit current density and fill factor. Consequently, the ternary device delivers an efficiency of 19.1% (certified as 18.7%), representing one of the highest values reported so far. Moreover, this system can achieve a promising efficiency of approximately 19% in tetrahydrofuran-processed OPV devices fabricated by a blade-coating technology. Importantly, the BTP-F3Cl-introduced ternary system can overcome the scaling lag of device efficiency more effectively than the host system. Overall, this work can effectively guide the lab-to-manufacturing translation of green printing OSCs.
The BTP-F3Cl-based ternary system can overcome the scaling lag of device efficiency more effectively than the PM1:L8-BO host system, which can guide the lab-to-manufacturing translation of green printing organic solar cells. |
doi_str_mv | 10.1039/d2ee03134e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2EE03134E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747205457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-84a4f3e19f625f33581b848876f20307251645f52c23f4c4b649f59e55b396e03</originalsourceid><addsrcrecordid>eNpFkMtLAzEQh4MoWKsX70LAm7Cad3aPpa4PKHjR85LGSd2S3azJVuh_39T6OAy_gfmYYT6ELim5pYRXd-8MgHDKBRyhCdVSFFITdfzbq4qdorOU1oQoRnQ1QcOsx8b7sMWpy4m74MFuPGBjLQxjiNjlWkWAHg-x7ce2X-EQV6ZvLU7Bm4gteJ9w-IJoQ7cfjx-AkzV-33uTcYfBuda20NvtOTpxxie4-MkpenuoX-dPxeLl8Xk-WxSWUToWpTDCcaCVU0w6zmVJl6UoS60cI5xoJqkS0klmGXfCiqUSlZMVSLnklcoOpuj6sHeI4XMDaWzWYRP7fLJhWmhGpJA6UzcHysaQUgTX5Cc7E7cNJc3eaHPP6vrbaJ3hqwMck_3j_o3zHTLlckY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747205457</pqid></control><display><type>article</type><title>An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency</title><source>Royal Society Of Chemistry Journals</source><creator>Wan, Ji ; Wu, Yao ; Sun, Rui ; Qiao, Jiawei ; Hao, Xiaotao ; Min, Jie</creator><creatorcontrib>Wan, Ji ; Wu, Yao ; Sun, Rui ; Qiao, Jiawei ; Hao, Xiaotao ; Min, Jie</creatorcontrib><description>How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the L8-BO:BTP-F3Cl alloy acceptor shows larger exciton diffusion length, higher photoluminescence quantum yield and superior electron mobility. With the introduction of BTP-F3Cl, the red-shifted absorption spectra, the prolonged exciton lifetime, the enhanced charge transport property, and the depressed non-radiative recombination promote the ternary system to obtain improved short-circuit current density and fill factor. Consequently, the ternary device delivers an efficiency of 19.1% (certified as 18.7%), representing one of the highest values reported so far. Moreover, this system can achieve a promising efficiency of approximately 19% in tetrahydrofuran-processed OPV devices fabricated by a blade-coating technology. Importantly, the BTP-F3Cl-introduced ternary system can overcome the scaling lag of device efficiency more effectively than the host system. Overall, this work can effectively guide the lab-to-manufacturing translation of green printing OSCs.
The BTP-F3Cl-based ternary system can overcome the scaling lag of device efficiency more effectively than the PM1:L8-BO host system, which can guide the lab-to-manufacturing translation of green printing organic solar cells.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee03134e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Acceptor materials ; Blade coating ; Charge transport ; Circuits ; Diffusion length ; Efficiency ; Electron mobility ; Excitation spectra ; Excitons ; Photoluminescence ; Photons ; Photovoltaic cells ; Radiative recombination ; Recombination ; Short circuit currents ; Short-circuit current ; Solar cells ; Ternary systems ; Tetrahydrofuran ; Transport properties</subject><ispartof>Energy & environmental science, 2022-12, Vol.15 (12), p.5192-521</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-84a4f3e19f625f33581b848876f20307251645f52c23f4c4b649f59e55b396e03</citedby><cites>FETCH-LOGICAL-c211t-84a4f3e19f625f33581b848876f20307251645f52c23f4c4b649f59e55b396e03</cites><orcidid>0000-0003-0447-3764 ; 0000-0002-0197-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wan, Ji</creatorcontrib><creatorcontrib>Wu, Yao</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Qiao, Jiawei</creatorcontrib><creatorcontrib>Hao, Xiaotao</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><title>An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency</title><title>Energy & environmental science</title><description>How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the L8-BO:BTP-F3Cl alloy acceptor shows larger exciton diffusion length, higher photoluminescence quantum yield and superior electron mobility. With the introduction of BTP-F3Cl, the red-shifted absorption spectra, the prolonged exciton lifetime, the enhanced charge transport property, and the depressed non-radiative recombination promote the ternary system to obtain improved short-circuit current density and fill factor. Consequently, the ternary device delivers an efficiency of 19.1% (certified as 18.7%), representing one of the highest values reported so far. Moreover, this system can achieve a promising efficiency of approximately 19% in tetrahydrofuran-processed OPV devices fabricated by a blade-coating technology. Importantly, the BTP-F3Cl-introduced ternary system can overcome the scaling lag of device efficiency more effectively than the host system. Overall, this work can effectively guide the lab-to-manufacturing translation of green printing OSCs.
The BTP-F3Cl-based ternary system can overcome the scaling lag of device efficiency more effectively than the PM1:L8-BO host system, which can guide the lab-to-manufacturing translation of green printing organic solar cells.</description><subject>Absorption spectra</subject><subject>Acceptor materials</subject><subject>Blade coating</subject><subject>Charge transport</subject><subject>Circuits</subject><subject>Diffusion length</subject><subject>Efficiency</subject><subject>Electron mobility</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Recombination</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>Ternary systems</subject><subject>Tetrahydrofuran</subject><subject>Transport properties</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtLAzEQh4MoWKsX70LAm7Cad3aPpa4PKHjR85LGSd2S3azJVuh_39T6OAy_gfmYYT6ELim5pYRXd-8MgHDKBRyhCdVSFFITdfzbq4qdorOU1oQoRnQ1QcOsx8b7sMWpy4m74MFuPGBjLQxjiNjlWkWAHg-x7ce2X-EQV6ZvLU7Bm4gteJ9w-IJoQ7cfjx-AkzV-33uTcYfBuda20NvtOTpxxie4-MkpenuoX-dPxeLl8Xk-WxSWUToWpTDCcaCVU0w6zmVJl6UoS60cI5xoJqkS0klmGXfCiqUSlZMVSLnklcoOpuj6sHeI4XMDaWzWYRP7fLJhWmhGpJA6UzcHysaQUgTX5Cc7E7cNJc3eaHPP6vrbaJ3hqwMck_3j_o3zHTLlckY</recordid><startdate>20221207</startdate><enddate>20221207</enddate><creator>Wan, Ji</creator><creator>Wu, Yao</creator><creator>Sun, Rui</creator><creator>Qiao, Jiawei</creator><creator>Hao, Xiaotao</creator><creator>Min, Jie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0447-3764</orcidid><orcidid>https://orcid.org/0000-0002-0197-6545</orcidid></search><sort><creationdate>20221207</creationdate><title>An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency</title><author>Wan, Ji ; Wu, Yao ; Sun, Rui ; Qiao, Jiawei ; Hao, Xiaotao ; Min, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-84a4f3e19f625f33581b848876f20307251645f52c23f4c4b649f59e55b396e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectra</topic><topic>Acceptor materials</topic><topic>Blade coating</topic><topic>Charge transport</topic><topic>Circuits</topic><topic>Diffusion length</topic><topic>Efficiency</topic><topic>Electron mobility</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Recombination</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>Ternary systems</topic><topic>Tetrahydrofuran</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Ji</creatorcontrib><creatorcontrib>Wu, Yao</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Qiao, Jiawei</creatorcontrib><creatorcontrib>Hao, Xiaotao</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Ji</au><au>Wu, Yao</au><au>Sun, Rui</au><au>Qiao, Jiawei</au><au>Hao, Xiaotao</au><au>Min, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency</atitle><jtitle>Energy & environmental science</jtitle><date>2022-12-07</date><risdate>2022</risdate><volume>15</volume><issue>12</issue><spage>5192</spage><epage>521</epage><pages>5192-521</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the L8-BO:BTP-F3Cl alloy acceptor shows larger exciton diffusion length, higher photoluminescence quantum yield and superior electron mobility. With the introduction of BTP-F3Cl, the red-shifted absorption spectra, the prolonged exciton lifetime, the enhanced charge transport property, and the depressed non-radiative recombination promote the ternary system to obtain improved short-circuit current density and fill factor. Consequently, the ternary device delivers an efficiency of 19.1% (certified as 18.7%), representing one of the highest values reported so far. Moreover, this system can achieve a promising efficiency of approximately 19% in tetrahydrofuran-processed OPV devices fabricated by a blade-coating technology. Importantly, the BTP-F3Cl-introduced ternary system can overcome the scaling lag of device efficiency more effectively than the host system. Overall, this work can effectively guide the lab-to-manufacturing translation of green printing OSCs.
The BTP-F3Cl-based ternary system can overcome the scaling lag of device efficiency more effectively than the PM1:L8-BO host system, which can guide the lab-to-manufacturing translation of green printing organic solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee03134e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0447-3764</orcidid><orcidid>https://orcid.org/0000-0002-0197-6545</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2022-12, Vol.15 (12), p.5192-521 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2EE03134E |
source | Royal Society Of Chemistry Journals |
subjects | Absorption spectra Acceptor materials Blade coating Charge transport Circuits Diffusion length Efficiency Electron mobility Excitation spectra Excitons Photoluminescence Photons Photovoltaic cells Radiative recombination Recombination Short circuit currents Short-circuit current Solar cells Ternary systems Tetrahydrofuran Transport properties |
title | An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alloy%20small%20molecule%20acceptor%20for%20green%20printing%20organic%20solar%20cells%20overcoming%20the%20scaling%20lag%20of%20efficiency&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Wan,%20Ji&rft.date=2022-12-07&rft.volume=15&rft.issue=12&rft.spage=5192&rft.epage=521&rft.pages=5192-521&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee03134e&rft_dat=%3Cproquest_cross%3E2747205457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747205457&rft_id=info:pmid/&rfr_iscdi=true |