An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency

How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2022-12, Vol.15 (12), p.5192-521
Hauptverfasser: Wan, Ji, Wu, Yao, Sun, Rui, Qiao, Jiawei, Hao, Xiaotao, Min, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 12
container_start_page 5192
container_title Energy & environmental science
container_volume 15
creator Wan, Ji
Wu, Yao
Sun, Rui
Qiao, Jiawei
Hao, Xiaotao
Min, Jie
description How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the L8-BO:BTP-F3Cl alloy acceptor shows larger exciton diffusion length, higher photoluminescence quantum yield and superior electron mobility. With the introduction of BTP-F3Cl, the red-shifted absorption spectra, the prolonged exciton lifetime, the enhanced charge transport property, and the depressed non-radiative recombination promote the ternary system to obtain improved short-circuit current density and fill factor. Consequently, the ternary device delivers an efficiency of 19.1% (certified as 18.7%), representing one of the highest values reported so far. Moreover, this system can achieve a promising efficiency of approximately 19% in tetrahydrofuran-processed OPV devices fabricated by a blade-coating technology. Importantly, the BTP-F3Cl-introduced ternary system can overcome the scaling lag of device efficiency more effectively than the host system. Overall, this work can effectively guide the lab-to-manufacturing translation of green printing OSCs. The BTP-F3Cl-based ternary system can overcome the scaling lag of device efficiency more effectively than the PM1:L8-BO host system, which can guide the lab-to-manufacturing translation of green printing organic solar cells.
doi_str_mv 10.1039/d2ee03134e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2EE03134E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747205457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-84a4f3e19f625f33581b848876f20307251645f52c23f4c4b649f59e55b396e03</originalsourceid><addsrcrecordid>eNpFkMtLAzEQh4MoWKsX70LAm7Cad3aPpa4PKHjR85LGSd2S3azJVuh_39T6OAy_gfmYYT6ELim5pYRXd-8MgHDKBRyhCdVSFFITdfzbq4qdorOU1oQoRnQ1QcOsx8b7sMWpy4m74MFuPGBjLQxjiNjlWkWAHg-x7ce2X-EQV6ZvLU7Bm4gteJ9w-IJoQ7cfjx-AkzV-33uTcYfBuda20NvtOTpxxie4-MkpenuoX-dPxeLl8Xk-WxSWUToWpTDCcaCVU0w6zmVJl6UoS60cI5xoJqkS0klmGXfCiqUSlZMVSLnklcoOpuj6sHeI4XMDaWzWYRP7fLJhWmhGpJA6UzcHysaQUgTX5Cc7E7cNJc3eaHPP6vrbaJ3hqwMck_3j_o3zHTLlckY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747205457</pqid></control><display><type>article</type><title>An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency</title><source>Royal Society Of Chemistry Journals</source><creator>Wan, Ji ; Wu, Yao ; Sun, Rui ; Qiao, Jiawei ; Hao, Xiaotao ; Min, Jie</creator><creatorcontrib>Wan, Ji ; Wu, Yao ; Sun, Rui ; Qiao, Jiawei ; Hao, Xiaotao ; Min, Jie</creatorcontrib><description>How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the L8-BO:BTP-F3Cl alloy acceptor shows larger exciton diffusion length, higher photoluminescence quantum yield and superior electron mobility. With the introduction of BTP-F3Cl, the red-shifted absorption spectra, the prolonged exciton lifetime, the enhanced charge transport property, and the depressed non-radiative recombination promote the ternary system to obtain improved short-circuit current density and fill factor. Consequently, the ternary device delivers an efficiency of 19.1% (certified as 18.7%), representing one of the highest values reported so far. Moreover, this system can achieve a promising efficiency of approximately 19% in tetrahydrofuran-processed OPV devices fabricated by a blade-coating technology. Importantly, the BTP-F3Cl-introduced ternary system can overcome the scaling lag of device efficiency more effectively than the host system. Overall, this work can effectively guide the lab-to-manufacturing translation of green printing OSCs. The BTP-F3Cl-based ternary system can overcome the scaling lag of device efficiency more effectively than the PM1:L8-BO host system, which can guide the lab-to-manufacturing translation of green printing organic solar cells.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee03134e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Acceptor materials ; Blade coating ; Charge transport ; Circuits ; Diffusion length ; Efficiency ; Electron mobility ; Excitation spectra ; Excitons ; Photoluminescence ; Photons ; Photovoltaic cells ; Radiative recombination ; Recombination ; Short circuit currents ; Short-circuit current ; Solar cells ; Ternary systems ; Tetrahydrofuran ; Transport properties</subject><ispartof>Energy &amp; environmental science, 2022-12, Vol.15 (12), p.5192-521</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-84a4f3e19f625f33581b848876f20307251645f52c23f4c4b649f59e55b396e03</citedby><cites>FETCH-LOGICAL-c211t-84a4f3e19f625f33581b848876f20307251645f52c23f4c4b649f59e55b396e03</cites><orcidid>0000-0003-0447-3764 ; 0000-0002-0197-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wan, Ji</creatorcontrib><creatorcontrib>Wu, Yao</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Qiao, Jiawei</creatorcontrib><creatorcontrib>Hao, Xiaotao</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><title>An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency</title><title>Energy &amp; environmental science</title><description>How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the L8-BO:BTP-F3Cl alloy acceptor shows larger exciton diffusion length, higher photoluminescence quantum yield and superior electron mobility. With the introduction of BTP-F3Cl, the red-shifted absorption spectra, the prolonged exciton lifetime, the enhanced charge transport property, and the depressed non-radiative recombination promote the ternary system to obtain improved short-circuit current density and fill factor. Consequently, the ternary device delivers an efficiency of 19.1% (certified as 18.7%), representing one of the highest values reported so far. Moreover, this system can achieve a promising efficiency of approximately 19% in tetrahydrofuran-processed OPV devices fabricated by a blade-coating technology. Importantly, the BTP-F3Cl-introduced ternary system can overcome the scaling lag of device efficiency more effectively than the host system. Overall, this work can effectively guide the lab-to-manufacturing translation of green printing OSCs. The BTP-F3Cl-based ternary system can overcome the scaling lag of device efficiency more effectively than the PM1:L8-BO host system, which can guide the lab-to-manufacturing translation of green printing organic solar cells.</description><subject>Absorption spectra</subject><subject>Acceptor materials</subject><subject>Blade coating</subject><subject>Charge transport</subject><subject>Circuits</subject><subject>Diffusion length</subject><subject>Efficiency</subject><subject>Electron mobility</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Recombination</subject><subject>Short circuit currents</subject><subject>Short-circuit current</subject><subject>Solar cells</subject><subject>Ternary systems</subject><subject>Tetrahydrofuran</subject><subject>Transport properties</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtLAzEQh4MoWKsX70LAm7Cad3aPpa4PKHjR85LGSd2S3azJVuh_39T6OAy_gfmYYT6ELim5pYRXd-8MgHDKBRyhCdVSFFITdfzbq4qdorOU1oQoRnQ1QcOsx8b7sMWpy4m74MFuPGBjLQxjiNjlWkWAHg-x7ce2X-EQV6ZvLU7Bm4gteJ9w-IJoQ7cfjx-AkzV-33uTcYfBuda20NvtOTpxxie4-MkpenuoX-dPxeLl8Xk-WxSWUToWpTDCcaCVU0w6zmVJl6UoS60cI5xoJqkS0klmGXfCiqUSlZMVSLnklcoOpuj6sHeI4XMDaWzWYRP7fLJhWmhGpJA6UzcHysaQUgTX5Cc7E7cNJc3eaHPP6vrbaJ3hqwMck_3j_o3zHTLlckY</recordid><startdate>20221207</startdate><enddate>20221207</enddate><creator>Wan, Ji</creator><creator>Wu, Yao</creator><creator>Sun, Rui</creator><creator>Qiao, Jiawei</creator><creator>Hao, Xiaotao</creator><creator>Min, Jie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0447-3764</orcidid><orcidid>https://orcid.org/0000-0002-0197-6545</orcidid></search><sort><creationdate>20221207</creationdate><title>An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency</title><author>Wan, Ji ; Wu, Yao ; Sun, Rui ; Qiao, Jiawei ; Hao, Xiaotao ; Min, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-84a4f3e19f625f33581b848876f20307251645f52c23f4c4b649f59e55b396e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectra</topic><topic>Acceptor materials</topic><topic>Blade coating</topic><topic>Charge transport</topic><topic>Circuits</topic><topic>Diffusion length</topic><topic>Efficiency</topic><topic>Electron mobility</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Recombination</topic><topic>Short circuit currents</topic><topic>Short-circuit current</topic><topic>Solar cells</topic><topic>Ternary systems</topic><topic>Tetrahydrofuran</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Ji</creatorcontrib><creatorcontrib>Wu, Yao</creatorcontrib><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Qiao, Jiawei</creatorcontrib><creatorcontrib>Hao, Xiaotao</creatorcontrib><creatorcontrib>Min, Jie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Ji</au><au>Wu, Yao</au><au>Sun, Rui</au><au>Qiao, Jiawei</au><au>Hao, Xiaotao</au><au>Min, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2022-12-07</date><risdate>2022</risdate><volume>15</volume><issue>12</issue><spage>5192</spage><epage>521</epage><pages>5192-521</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>How to design organic solar cell (OSC) systems with high device efficiency and excellent processing performance is still one of the urgent issues to be solved. Herein, we designed an asymmetric acceptor BTP-F3Cl and incorporated it into the PM1:L8-BO blend. Compared with the L8-BO neat acceptor, the L8-BO:BTP-F3Cl alloy acceptor shows larger exciton diffusion length, higher photoluminescence quantum yield and superior electron mobility. With the introduction of BTP-F3Cl, the red-shifted absorption spectra, the prolonged exciton lifetime, the enhanced charge transport property, and the depressed non-radiative recombination promote the ternary system to obtain improved short-circuit current density and fill factor. Consequently, the ternary device delivers an efficiency of 19.1% (certified as 18.7%), representing one of the highest values reported so far. Moreover, this system can achieve a promising efficiency of approximately 19% in tetrahydrofuran-processed OPV devices fabricated by a blade-coating technology. Importantly, the BTP-F3Cl-introduced ternary system can overcome the scaling lag of device efficiency more effectively than the host system. Overall, this work can effectively guide the lab-to-manufacturing translation of green printing OSCs. The BTP-F3Cl-based ternary system can overcome the scaling lag of device efficiency more effectively than the PM1:L8-BO host system, which can guide the lab-to-manufacturing translation of green printing organic solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee03134e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0447-3764</orcidid><orcidid>https://orcid.org/0000-0002-0197-6545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2022-12, Vol.15 (12), p.5192-521
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_D2EE03134E
source Royal Society Of Chemistry Journals
subjects Absorption spectra
Acceptor materials
Blade coating
Charge transport
Circuits
Diffusion length
Efficiency
Electron mobility
Excitation spectra
Excitons
Photoluminescence
Photons
Photovoltaic cells
Radiative recombination
Recombination
Short circuit currents
Short-circuit current
Solar cells
Ternary systems
Tetrahydrofuran
Transport properties
title An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alloy%20small%20molecule%20acceptor%20for%20green%20printing%20organic%20solar%20cells%20overcoming%20the%20scaling%20lag%20of%20efficiency&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Wan,%20Ji&rft.date=2022-12-07&rft.volume=15&rft.issue=12&rft.spage=5192&rft.epage=521&rft.pages=5192-521&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee03134e&rft_dat=%3Cproquest_cross%3E2747205457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747205457&rft_id=info:pmid/&rfr_iscdi=true