Advances in organic microporous membranes for CO 2 separation

Carbon emission has become a worldwide concern with global warming and concurrent climate changes. Carbon capture using membrane-based technology offers an effective way to achieve controllable carbon emission and carbon neutrality. During the past decade, organic microporous materials have demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-01, Vol.16 (1), p.53-75
Hauptverfasser: Wang, Yuhan, Jiang, Haifei, Guo, Zheyuan, Ma, Hanze, Wang, Shaoyu, Wang, Hongjian, Song, Shuqing, Zhang, Junfeng, Yin, Yan, Wu, Hong, Jiang, Zhongyi, Guiver, Michael D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 53
container_title Energy & environmental science
container_volume 16
creator Wang, Yuhan
Jiang, Haifei
Guo, Zheyuan
Ma, Hanze
Wang, Shaoyu
Wang, Hongjian
Song, Shuqing
Zhang, Junfeng
Yin, Yan
Wu, Hong
Jiang, Zhongyi
Guiver, Michael D.
description Carbon emission has become a worldwide concern with global warming and concurrent climate changes. Carbon capture using membrane-based technology offers an effective way to achieve controllable carbon emission and carbon neutrality. During the past decade, organic microporous materials have demonstrated superior physical and chemical properties and triggered a revolution in novel membrane structures. In this Perspective, we focus on progress in advanced organic microporous membranes, with an emphasis on highlighting confined mass transport mechanisms, design principles and representative organic microporous membranes as well as their CO 2 separation applications. First, we discuss the abnormal confinement effect in organic microporous membrane channels based on a physical/chemical confined mechanism to understand CO 2 molecular transport behavior. Second, we propose three design principles, nano-assembly engineering, reticular engineering, and microenvironment engineering, to construct task-specific membrane structures. Third, we summarize four categories of organic microporous membrane materials, which are polymers of intrinsic microporosity (PIM), graphene oxide (GO), metal–organic framework (MOF) and covalent organic framework (COF). Last, we provide a perspective on the opportunities and major challenges to achieve the transformation from advanced membranes to real-world applications.
doi_str_mv 10.1039/D2EE02449G
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2EE02449G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D2EE02449G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76G-793e17555a2366b6db25e87e6c3366c61fa1c806b40a6989612a41ad93eedd153</originalsourceid><addsrcrecordid>eNpFT01LxDAUDOKC664Xf0HOQjWfL83Bw1K7VVjYy97La5pKxTYlUcF_b0TF08zAzLw3hFxzdsuZtHcPoq6ZUMo2Z2TNjVaFNgzO_zhYcUEuU3phDAQzdk3ud_0Hzs4nOs40xGecR0en0cWwhBjeE5381EWcs2EIkVZHKmjyC0Z8G8O8JasBX5O_-sUNOe3rU_VYHI7NU7U7FM5AUxgrfb6vNQoJ0EHfCe1L48HJrB3wAbkrGXSKIdjSAheoOPY55vuea7khNz-1-a2Uoh_aJY4Txs-Ws_Z7d_u_W34BGTNJeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in organic microporous membranes for CO 2 separation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Yuhan ; Jiang, Haifei ; Guo, Zheyuan ; Ma, Hanze ; Wang, Shaoyu ; Wang, Hongjian ; Song, Shuqing ; Zhang, Junfeng ; Yin, Yan ; Wu, Hong ; Jiang, Zhongyi ; Guiver, Michael D.</creator><creatorcontrib>Wang, Yuhan ; Jiang, Haifei ; Guo, Zheyuan ; Ma, Hanze ; Wang, Shaoyu ; Wang, Hongjian ; Song, Shuqing ; Zhang, Junfeng ; Yin, Yan ; Wu, Hong ; Jiang, Zhongyi ; Guiver, Michael D.</creatorcontrib><description>Carbon emission has become a worldwide concern with global warming and concurrent climate changes. Carbon capture using membrane-based technology offers an effective way to achieve controllable carbon emission and carbon neutrality. During the past decade, organic microporous materials have demonstrated superior physical and chemical properties and triggered a revolution in novel membrane structures. In this Perspective, we focus on progress in advanced organic microporous membranes, with an emphasis on highlighting confined mass transport mechanisms, design principles and representative organic microporous membranes as well as their CO 2 separation applications. First, we discuss the abnormal confinement effect in organic microporous membrane channels based on a physical/chemical confined mechanism to understand CO 2 molecular transport behavior. Second, we propose three design principles, nano-assembly engineering, reticular engineering, and microenvironment engineering, to construct task-specific membrane structures. Third, we summarize four categories of organic microporous membrane materials, which are polymers of intrinsic microporosity (PIM), graphene oxide (GO), metal–organic framework (MOF) and covalent organic framework (COF). Last, we provide a perspective on the opportunities and major challenges to achieve the transformation from advanced membranes to real-world applications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D2EE02449G</identifier><language>eng</language><ispartof>Energy &amp; environmental science, 2023-01, Vol.16 (1), p.53-75</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76G-793e17555a2366b6db25e87e6c3366c61fa1c806b40a6989612a41ad93eedd153</citedby><cites>FETCH-LOGICAL-c76G-793e17555a2366b6db25e87e6c3366c61fa1c806b40a6989612a41ad93eedd153</cites><orcidid>0000-0002-0048-8849 ; 0000-0003-2619-6809 ; 0000-0003-4723-2645 ; 0000-0003-1655-6831 ; 0000-0001-6600-4459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Wang, Yuhan</creatorcontrib><creatorcontrib>Jiang, Haifei</creatorcontrib><creatorcontrib>Guo, Zheyuan</creatorcontrib><creatorcontrib>Ma, Hanze</creatorcontrib><creatorcontrib>Wang, Shaoyu</creatorcontrib><creatorcontrib>Wang, Hongjian</creatorcontrib><creatorcontrib>Song, Shuqing</creatorcontrib><creatorcontrib>Zhang, Junfeng</creatorcontrib><creatorcontrib>Yin, Yan</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Jiang, Zhongyi</creatorcontrib><creatorcontrib>Guiver, Michael D.</creatorcontrib><title>Advances in organic microporous membranes for CO 2 separation</title><title>Energy &amp; environmental science</title><description>Carbon emission has become a worldwide concern with global warming and concurrent climate changes. Carbon capture using membrane-based technology offers an effective way to achieve controllable carbon emission and carbon neutrality. During the past decade, organic microporous materials have demonstrated superior physical and chemical properties and triggered a revolution in novel membrane structures. In this Perspective, we focus on progress in advanced organic microporous membranes, with an emphasis on highlighting confined mass transport mechanisms, design principles and representative organic microporous membranes as well as their CO 2 separation applications. First, we discuss the abnormal confinement effect in organic microporous membrane channels based on a physical/chemical confined mechanism to understand CO 2 molecular transport behavior. Second, we propose three design principles, nano-assembly engineering, reticular engineering, and microenvironment engineering, to construct task-specific membrane structures. Third, we summarize four categories of organic microporous membrane materials, which are polymers of intrinsic microporosity (PIM), graphene oxide (GO), metal–organic framework (MOF) and covalent organic framework (COF). Last, we provide a perspective on the opportunities and major challenges to achieve the transformation from advanced membranes to real-world applications.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFT01LxDAUDOKC664Xf0HOQjWfL83Bw1K7VVjYy97La5pKxTYlUcF_b0TF08zAzLw3hFxzdsuZtHcPoq6ZUMo2Z2TNjVaFNgzO_zhYcUEuU3phDAQzdk3ud_0Hzs4nOs40xGecR0en0cWwhBjeE5381EWcs2EIkVZHKmjyC0Z8G8O8JasBX5O_-sUNOe3rU_VYHI7NU7U7FM5AUxgrfb6vNQoJ0EHfCe1L48HJrB3wAbkrGXSKIdjSAheoOPY55vuea7khNz-1-a2Uoh_aJY4Txs-Ws_Z7d_u_W34BGTNJeA</recordid><startdate>20230118</startdate><enddate>20230118</enddate><creator>Wang, Yuhan</creator><creator>Jiang, Haifei</creator><creator>Guo, Zheyuan</creator><creator>Ma, Hanze</creator><creator>Wang, Shaoyu</creator><creator>Wang, Hongjian</creator><creator>Song, Shuqing</creator><creator>Zhang, Junfeng</creator><creator>Yin, Yan</creator><creator>Wu, Hong</creator><creator>Jiang, Zhongyi</creator><creator>Guiver, Michael D.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0048-8849</orcidid><orcidid>https://orcid.org/0000-0003-2619-6809</orcidid><orcidid>https://orcid.org/0000-0003-4723-2645</orcidid><orcidid>https://orcid.org/0000-0003-1655-6831</orcidid><orcidid>https://orcid.org/0000-0001-6600-4459</orcidid></search><sort><creationdate>20230118</creationdate><title>Advances in organic microporous membranes for CO 2 separation</title><author>Wang, Yuhan ; Jiang, Haifei ; Guo, Zheyuan ; Ma, Hanze ; Wang, Shaoyu ; Wang, Hongjian ; Song, Shuqing ; Zhang, Junfeng ; Yin, Yan ; Wu, Hong ; Jiang, Zhongyi ; Guiver, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76G-793e17555a2366b6db25e87e6c3366c61fa1c806b40a6989612a41ad93eedd153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuhan</creatorcontrib><creatorcontrib>Jiang, Haifei</creatorcontrib><creatorcontrib>Guo, Zheyuan</creatorcontrib><creatorcontrib>Ma, Hanze</creatorcontrib><creatorcontrib>Wang, Shaoyu</creatorcontrib><creatorcontrib>Wang, Hongjian</creatorcontrib><creatorcontrib>Song, Shuqing</creatorcontrib><creatorcontrib>Zhang, Junfeng</creatorcontrib><creatorcontrib>Yin, Yan</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Jiang, Zhongyi</creatorcontrib><creatorcontrib>Guiver, Michael D.</creatorcontrib><collection>CrossRef</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuhan</au><au>Jiang, Haifei</au><au>Guo, Zheyuan</au><au>Ma, Hanze</au><au>Wang, Shaoyu</au><au>Wang, Hongjian</au><au>Song, Shuqing</au><au>Zhang, Junfeng</au><au>Yin, Yan</au><au>Wu, Hong</au><au>Jiang, Zhongyi</au><au>Guiver, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in organic microporous membranes for CO 2 separation</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-01-18</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>53</spage><epage>75</epage><pages>53-75</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Carbon emission has become a worldwide concern with global warming and concurrent climate changes. Carbon capture using membrane-based technology offers an effective way to achieve controllable carbon emission and carbon neutrality. During the past decade, organic microporous materials have demonstrated superior physical and chemical properties and triggered a revolution in novel membrane structures. In this Perspective, we focus on progress in advanced organic microporous membranes, with an emphasis on highlighting confined mass transport mechanisms, design principles and representative organic microporous membranes as well as their CO 2 separation applications. First, we discuss the abnormal confinement effect in organic microporous membrane channels based on a physical/chemical confined mechanism to understand CO 2 molecular transport behavior. Second, we propose three design principles, nano-assembly engineering, reticular engineering, and microenvironment engineering, to construct task-specific membrane structures. Third, we summarize four categories of organic microporous membrane materials, which are polymers of intrinsic microporosity (PIM), graphene oxide (GO), metal–organic framework (MOF) and covalent organic framework (COF). Last, we provide a perspective on the opportunities and major challenges to achieve the transformation from advanced membranes to real-world applications.</abstract><doi>10.1039/D2EE02449G</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-0048-8849</orcidid><orcidid>https://orcid.org/0000-0003-2619-6809</orcidid><orcidid>https://orcid.org/0000-0003-4723-2645</orcidid><orcidid>https://orcid.org/0000-0003-1655-6831</orcidid><orcidid>https://orcid.org/0000-0001-6600-4459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-01, Vol.16 (1), p.53-75
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_D2EE02449G
source Royal Society Of Chemistry Journals 2008-
title Advances in organic microporous membranes for CO 2 separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20organic%20microporous%20membranes%20for%20CO%202%20separation&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Wang,%20Yuhan&rft.date=2023-01-18&rft.volume=16&rft.issue=1&rft.spage=53&rft.epage=75&rft.pages=53-75&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D2EE02449G&rft_dat=%3Ccrossref%3E10_1039_D2EE02449G%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true