A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material

All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N crystals. However, product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-06, Vol.51 (24), p.9369-9376
Hauptverfasser: Zhao, Lei, Liu, Shijie, Chen, Yuanzheng, Yi, Wencai, Khodagholian, Darlar, Gu, Fenglong, Kelson, Eric, Zheng, Yonghao, Liu, Bingbing, Miao, Mao-Sheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9376
container_issue 24
container_start_page 9369
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 51
creator Zhao, Lei
Liu, Shijie
Chen, Yuanzheng
Yi, Wencai
Khodagholian, Darlar
Gu, Fenglong
Kelson, Eric
Zheng, Yonghao
Liu, Bingbing
Miao, Mao-Sheng
description All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N from the N group as revealed by the MD simulations.
doi_str_mv 10.1039/d2dt00820c
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2DT00820C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35674062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c992-ade49072e6a56ae04cd0819765c4d255d86dba03e86dde85570db7e31f4743383</originalsourceid><addsrcrecordid>eNo9kM1Kw0AYRQdRbK1ufACZtTD6zX-yLG39gaKbgsswzXxNI5OkzKRC3t5qtatzF4e7OITccnjgIPNHL3wPkAkoz8iYK2tZLqQ6P21hRuQqpU8AIUCLSzKS2lgFRozJx5S23RcG6kJgbd3HrsKWNl3Ach9cpGUcUu8CfaPcUJeoo7vYNXWq24pu62rLsMVYDcxjm-p-oI3rMdYuXJOLjQsJb_44IaunxWr2wpbvz6-z6ZKVeS6Y86hysAKN08YhqNJDxnNrdKm80Npnxq8dSDzQY6a1Bb-2KPlGWSVlJifk_nhbxi6liJtiF-vGxaHgUPzEKeZivvqNMzvId0d5t1836E_qfw35DbnWXzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhao, Lei ; Liu, Shijie ; Chen, Yuanzheng ; Yi, Wencai ; Khodagholian, Darlar ; Gu, Fenglong ; Kelson, Eric ; Zheng, Yonghao ; Liu, Bingbing ; Miao, Mao-Sheng</creator><creatorcontrib>Zhao, Lei ; Liu, Shijie ; Chen, Yuanzheng ; Yi, Wencai ; Khodagholian, Darlar ; Gu, Fenglong ; Kelson, Eric ; Zheng, Yonghao ; Liu, Bingbing ; Miao, Mao-Sheng</creatorcontrib><description>All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N from the N group as revealed by the MD simulations.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt00820c</identifier><identifier>PMID: 35674062</identifier><language>eng</language><publisher>England</publisher><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-06, Vol.51 (24), p.9369-9376</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c992-ade49072e6a56ae04cd0819765c4d255d86dba03e86dde85570db7e31f4743383</citedby><cites>FETCH-LOGICAL-c992-ade49072e6a56ae04cd0819765c4d255d86dba03e86dde85570db7e31f4743383</cites><orcidid>0000-0003-1931-3536 ; 0000-0001-9160-8350 ; 0000-0001-6681-8786 ; 0000-0001-6038-7209 ; 0000-0002-8141-6774 ; 0000-0003-3815-3435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35674062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Liu, Shijie</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Yi, Wencai</creatorcontrib><creatorcontrib>Khodagholian, Darlar</creatorcontrib><creatorcontrib>Gu, Fenglong</creatorcontrib><creatorcontrib>Kelson, Eric</creatorcontrib><creatorcontrib>Zheng, Yonghao</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Miao, Mao-Sheng</creatorcontrib><title>A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N from the N group as revealed by the MD simulations.</description><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AYRQdRbK1ufACZtTD6zX-yLG39gaKbgsswzXxNI5OkzKRC3t5qtatzF4e7OITccnjgIPNHL3wPkAkoz8iYK2tZLqQ6P21hRuQqpU8AIUCLSzKS2lgFRozJx5S23RcG6kJgbd3HrsKWNl3Ach9cpGUcUu8CfaPcUJeoo7vYNXWq24pu62rLsMVYDcxjm-p-oI3rMdYuXJOLjQsJb_44IaunxWr2wpbvz6-z6ZKVeS6Y86hysAKN08YhqNJDxnNrdKm80Npnxq8dSDzQY6a1Bb-2KPlGWSVlJifk_nhbxi6liJtiF-vGxaHgUPzEKeZivvqNMzvId0d5t1836E_qfw35DbnWXzA</recordid><startdate>20220621</startdate><enddate>20220621</enddate><creator>Zhao, Lei</creator><creator>Liu, Shijie</creator><creator>Chen, Yuanzheng</creator><creator>Yi, Wencai</creator><creator>Khodagholian, Darlar</creator><creator>Gu, Fenglong</creator><creator>Kelson, Eric</creator><creator>Zheng, Yonghao</creator><creator>Liu, Bingbing</creator><creator>Miao, Mao-Sheng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1931-3536</orcidid><orcidid>https://orcid.org/0000-0001-9160-8350</orcidid><orcidid>https://orcid.org/0000-0001-6681-8786</orcidid><orcidid>https://orcid.org/0000-0001-6038-7209</orcidid><orcidid>https://orcid.org/0000-0002-8141-6774</orcidid><orcidid>https://orcid.org/0000-0003-3815-3435</orcidid></search><sort><creationdate>20220621</creationdate><title>A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material</title><author>Zhao, Lei ; Liu, Shijie ; Chen, Yuanzheng ; Yi, Wencai ; Khodagholian, Darlar ; Gu, Fenglong ; Kelson, Eric ; Zheng, Yonghao ; Liu, Bingbing ; Miao, Mao-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c992-ade49072e6a56ae04cd0819765c4d255d86dba03e86dde85570db7e31f4743383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Liu, Shijie</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Yi, Wencai</creatorcontrib><creatorcontrib>Khodagholian, Darlar</creatorcontrib><creatorcontrib>Gu, Fenglong</creatorcontrib><creatorcontrib>Kelson, Eric</creatorcontrib><creatorcontrib>Zheng, Yonghao</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Miao, Mao-Sheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lei</au><au>Liu, Shijie</au><au>Chen, Yuanzheng</au><au>Yi, Wencai</au><au>Khodagholian, Darlar</au><au>Gu, Fenglong</au><au>Kelson, Eric</au><au>Zheng, Yonghao</au><au>Liu, Bingbing</au><au>Miao, Mao-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2022-06-21</date><risdate>2022</risdate><volume>51</volume><issue>24</issue><spage>9369</spage><epage>9376</epage><pages>9369-9376</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N from the N group as revealed by the MD simulations.</abstract><cop>England</cop><pmid>35674062</pmid><doi>10.1039/d2dt00820c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1931-3536</orcidid><orcidid>https://orcid.org/0000-0001-9160-8350</orcidid><orcidid>https://orcid.org/0000-0001-6681-8786</orcidid><orcidid>https://orcid.org/0000-0001-6038-7209</orcidid><orcidid>https://orcid.org/0000-0002-8141-6774</orcidid><orcidid>https://orcid.org/0000-0003-3815-3435</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2022-06, Vol.51 (24), p.9369-9376
issn 1477-9226
1477-9234
language eng
recordid cdi_crossref_primary_10_1039_D2DT00820C
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20all-nitrogen%20molecular%20crystal%20N%2016%20as%20a%20promising%20high-energy-density%20material&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Zhao,%20Lei&rft.date=2022-06-21&rft.volume=51&rft.issue=24&rft.spage=9369&rft.epage=9376&rft.pages=9369-9376&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt00820c&rft_dat=%3Cpubmed_cross%3E35674062%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35674062&rfr_iscdi=true