A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material
All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N crystals. However, product...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2022-06, Vol.51 (24), p.9369-9376 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9376 |
---|---|
container_issue | 24 |
container_start_page | 9369 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 51 |
creator | Zhao, Lei Liu, Shijie Chen, Yuanzheng Yi, Wencai Khodagholian, Darlar Gu, Fenglong Kelson, Eric Zheng, Yonghao Liu, Bingbing Miao, Mao-Sheng |
description | All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N
gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N
crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N
molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N
crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N
from the N
group as revealed by the MD simulations. |
doi_str_mv | 10.1039/d2dt00820c |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2DT00820C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35674062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c992-ade49072e6a56ae04cd0819765c4d255d86dba03e86dde85570db7e31f4743383</originalsourceid><addsrcrecordid>eNo9kM1Kw0AYRQdRbK1ufACZtTD6zX-yLG39gaKbgsswzXxNI5OkzKRC3t5qtatzF4e7OITccnjgIPNHL3wPkAkoz8iYK2tZLqQ6P21hRuQqpU8AIUCLSzKS2lgFRozJx5S23RcG6kJgbd3HrsKWNl3Ach9cpGUcUu8CfaPcUJeoo7vYNXWq24pu62rLsMVYDcxjm-p-oI3rMdYuXJOLjQsJb_44IaunxWr2wpbvz6-z6ZKVeS6Y86hysAKN08YhqNJDxnNrdKm80Npnxq8dSDzQY6a1Bb-2KPlGWSVlJifk_nhbxi6liJtiF-vGxaHgUPzEKeZivvqNMzvId0d5t1836E_qfw35DbnWXzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhao, Lei ; Liu, Shijie ; Chen, Yuanzheng ; Yi, Wencai ; Khodagholian, Darlar ; Gu, Fenglong ; Kelson, Eric ; Zheng, Yonghao ; Liu, Bingbing ; Miao, Mao-Sheng</creator><creatorcontrib>Zhao, Lei ; Liu, Shijie ; Chen, Yuanzheng ; Yi, Wencai ; Khodagholian, Darlar ; Gu, Fenglong ; Kelson, Eric ; Zheng, Yonghao ; Liu, Bingbing ; Miao, Mao-Sheng</creatorcontrib><description>All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N
gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N
crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N
molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N
crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N
from the N
group as revealed by the MD simulations.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt00820c</identifier><identifier>PMID: 35674062</identifier><language>eng</language><publisher>England</publisher><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-06, Vol.51 (24), p.9369-9376</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c992-ade49072e6a56ae04cd0819765c4d255d86dba03e86dde85570db7e31f4743383</citedby><cites>FETCH-LOGICAL-c992-ade49072e6a56ae04cd0819765c4d255d86dba03e86dde85570db7e31f4743383</cites><orcidid>0000-0003-1931-3536 ; 0000-0001-9160-8350 ; 0000-0001-6681-8786 ; 0000-0001-6038-7209 ; 0000-0002-8141-6774 ; 0000-0003-3815-3435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35674062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Liu, Shijie</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Yi, Wencai</creatorcontrib><creatorcontrib>Khodagholian, Darlar</creatorcontrib><creatorcontrib>Gu, Fenglong</creatorcontrib><creatorcontrib>Kelson, Eric</creatorcontrib><creatorcontrib>Zheng, Yonghao</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Miao, Mao-Sheng</creatorcontrib><title>A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N
gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N
crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N
molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N
crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N
from the N
group as revealed by the MD simulations.</description><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AYRQdRbK1ufACZtTD6zX-yLG39gaKbgsswzXxNI5OkzKRC3t5qtatzF4e7OITccnjgIPNHL3wPkAkoz8iYK2tZLqQ6P21hRuQqpU8AIUCLSzKS2lgFRozJx5S23RcG6kJgbd3HrsKWNl3Ach9cpGUcUu8CfaPcUJeoo7vYNXWq24pu62rLsMVYDcxjm-p-oI3rMdYuXJOLjQsJb_44IaunxWr2wpbvz6-z6ZKVeS6Y86hysAKN08YhqNJDxnNrdKm80Npnxq8dSDzQY6a1Bb-2KPlGWSVlJifk_nhbxi6liJtiF-vGxaHgUPzEKeZivvqNMzvId0d5t1836E_qfw35DbnWXzA</recordid><startdate>20220621</startdate><enddate>20220621</enddate><creator>Zhao, Lei</creator><creator>Liu, Shijie</creator><creator>Chen, Yuanzheng</creator><creator>Yi, Wencai</creator><creator>Khodagholian, Darlar</creator><creator>Gu, Fenglong</creator><creator>Kelson, Eric</creator><creator>Zheng, Yonghao</creator><creator>Liu, Bingbing</creator><creator>Miao, Mao-Sheng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1931-3536</orcidid><orcidid>https://orcid.org/0000-0001-9160-8350</orcidid><orcidid>https://orcid.org/0000-0001-6681-8786</orcidid><orcidid>https://orcid.org/0000-0001-6038-7209</orcidid><orcidid>https://orcid.org/0000-0002-8141-6774</orcidid><orcidid>https://orcid.org/0000-0003-3815-3435</orcidid></search><sort><creationdate>20220621</creationdate><title>A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material</title><author>Zhao, Lei ; Liu, Shijie ; Chen, Yuanzheng ; Yi, Wencai ; Khodagholian, Darlar ; Gu, Fenglong ; Kelson, Eric ; Zheng, Yonghao ; Liu, Bingbing ; Miao, Mao-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c992-ade49072e6a56ae04cd0819765c4d255d86dba03e86dde85570db7e31f4743383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Liu, Shijie</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Yi, Wencai</creatorcontrib><creatorcontrib>Khodagholian, Darlar</creatorcontrib><creatorcontrib>Gu, Fenglong</creatorcontrib><creatorcontrib>Kelson, Eric</creatorcontrib><creatorcontrib>Zheng, Yonghao</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Miao, Mao-Sheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lei</au><au>Liu, Shijie</au><au>Chen, Yuanzheng</au><au>Yi, Wencai</au><au>Khodagholian, Darlar</au><au>Gu, Fenglong</au><au>Kelson, Eric</au><au>Zheng, Yonghao</au><au>Liu, Bingbing</au><au>Miao, Mao-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2022-06-21</date><risdate>2022</risdate><volume>51</volume><issue>24</issue><spage>9369</spage><epage>9376</epage><pages>9369-9376</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N
gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N
crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N
molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N
crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N
from the N
group as revealed by the MD simulations.</abstract><cop>England</cop><pmid>35674062</pmid><doi>10.1039/d2dt00820c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1931-3536</orcidid><orcidid>https://orcid.org/0000-0001-9160-8350</orcidid><orcidid>https://orcid.org/0000-0001-6681-8786</orcidid><orcidid>https://orcid.org/0000-0001-6038-7209</orcidid><orcidid>https://orcid.org/0000-0002-8141-6774</orcidid><orcidid>https://orcid.org/0000-0003-3815-3435</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2022-06, Vol.51 (24), p.9369-9376 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2DT00820C |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | A novel all-nitrogen molecular crystal N 16 as a promising high-energy-density material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20all-nitrogen%20molecular%20crystal%20N%2016%20as%20a%20promising%20high-energy-density%20material&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Zhao,%20Lei&rft.date=2022-06-21&rft.volume=51&rft.issue=24&rft.spage=9369&rft.epage=9376&rft.pages=9369-9376&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt00820c&rft_dat=%3Cpubmed_cross%3E35674062%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35674062&rfr_iscdi=true |